SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hagen Thorn V. A.) "

Search: WFRF:(Hagen Thorn V. A.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abdo, A. A., et al. (author)
  • Multi-wavelength observations of the flaring gamma-ray blazar 3C 66A in 2008 October
  • 2011
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 726:1, s. 43-
  • Journal article (peer-reviewed)abstract
    • The BL Lacertae object 3C 66A was detected in a flaring state by the Fermi Large Area Telescope (LAT) and VERITAS in 2008 October. In addition to these gamma-ray observations, F-GAMMA, GASP-WEBT, PAIRITEL, MDM, ATOM, Swift, and Chandra provided radio to X-ray coverage. The available light curves show variability and, in particular, correlated flares are observed in the optical and Fermi-LAT gamma-ray band. The resulting spectral energy distribution can be well fitted using standard leptonic models with and without an external radiation field for inverse Compton scattering. It is found, however, that only the model with an external radiation field can accommodate the intra-night variability observed at optical wavelengths.
  •  
2.
  • Abdo, A. A., et al. (author)
  • FERMI Large Area Telescope and multi-wavelength observations of the flaring activity of PKS 1510-089 between 2008 september and 2009 june
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 721:2, s. 1425-1447
  • Journal article (peer-reviewed)abstract
    • We report on the multi-wavelength observations of PKS 1510-089 (a flat spectrum radio quasar (FSRQ) at z = 0.361) during its high activity period between 2008 September and 2009 June. During this 11 month period, the source was characterized by a complex variability at optical, UV, and gamma-ray bands, on timescales down to 6-12 hr. The brightest gamma-ray isotropic luminosity, recorded on 2009 March 26, was similar or equal to 2 x 1048 erg s-1. The spectrum in the Fermi Large Area Telescope energy range shows a mild curvature described well by a log-parabolic law, and can be understood as due to the Klein-Nishina effect. The. -ray flux has a complex correlation with the other wavelengths. There is no correlation at all with the X-ray band, a weak correlation with the UV, and a significant correlation with the optical flux. The. -ray flux seems to lead the optical one by about 13 days. From the UV photometry, we estimated a black hole mass of similar or equal to 5.4 x 10(8)M(circle dot) and an accretion rate of similar or equal to 0.5M(circle dot) yr(-1). Although the power in the thermal and non-thermal outputs is smaller compared to the very luminous and distant FSRQs, PKS 1510-089 exhibits a quite large Compton dominance and a prominent big blue bump (BBB) as observed in the most powerful gamma-ray quasars. The BBB was still prominent during the historical maximum optical state in 2009 May, but the optical/ UV spectral index was softer than in the quiescent state. This seems to indicate that the BBB was not completely dominated by the synchrotron emission during the highest optical state. We model the broadband spectrum assuming a leptonic scenario in which the inverse Compton emission is dominated by the scattering of soft photons produced externally to the jet. The resulting model-dependent jet energetic content is compatible with a scenario in which the jet is powered by the accretion disk, with a total efficiency within the Kerr black hole limit.
  •  
3.
  • Raiteri, C. M., et al. (author)
  • WEBT and XMM-Newton observations of 3C 454.3 during the post-outburst phase - Detection of the little and big blue bumps
  • 2007
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 473:3, s. 819-827
  • Journal article (peer-reviewed)abstract
    • Context. The quasar-type blazar 3C 454.3 was observed to undergo an unprecedented optical outburst in spring 2005, affecting the source brightness from the near-IR to the X-ray frequencies. This was first followed by a millimetric and then by a radio outburst, which peaked in February 2006. Aims. In this paper we report on follow-up observations to study the multiwavelength emission in the post-outburst phase. Methods. Radio, near-infrared, and optical monitoring was performed by the Whole Earth Blazar Telescope (WEBT) collaboration in the 2006-2007 observing season. XMM-Newton observations on July 2-3 and December 18-19, 2006 added information on the X-ray and UV states of the source. Results. The source was in a faint state. The radio flux at the higher frequencies showed a fast decreasing trend, which represents the tail of the big radio outburst. It was followed by a quiescent state, common at all radio frequencies. In contrast, moderate activity characterized the near-IR and optical light curves, with a progressive increase of the variability amplitude with increasing wavelength. We ascribe this redder-when-brighter behaviour to the presence of a ""little blue bump"" due to line emission from the broad line region, which is clearly visible in the source spectral energy distribution (SED) during faint states. Moreover, the data from the XMM- Newton Optical Monitor reveal a rise of the SED in the ultraviolet, suggesting the existence of a "" big blue bump"" due to thermal emission from the accretion disc. The X-ray spectra are well fitted with a power- law model with photoelectric absorption, possibly larger than the Galactic one. However, the comparison with previous X-ray observations would imply that the amount of absorbing matter is variable. Alternatively, the intrinsic X-ray spectrum presents a curvature, which may depend on the X-ray brightness. In this case, two scenarios are possible. i) There is no extra absorption, and the X-ray spectrum hardens at low energies, the hardening being more evident in bright states; ii) there is a constant amount of extra absorption, likely in the quasar environment, and the X-ray spectrum softens at low energies, at least in faint X-ray states. This softening might be the result of a flux contribution by the high-frequency tail of the big blue bump.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view