SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hajian Alireza) "

Sökning: WFRF:(Hajian Alireza)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benselfelt, Tobias, et al. (författare)
  • Electrochemically Controlled Hydrogels with Electrotunable Permeability and Uniaxial Actuation
  • 2023
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 35:45
  • Tidskriftsartikel (refereegranskat)abstract
    • The unique properties of hydrogels enable the design of life-like soft intelligent systems. However, stimuli-responsive hydrogels still suffer from limited actuation control. Direct electronic control of electronically conductive hydrogels can solve this challenge and allow direct integration with modern electronic systems. An electrochemically controlled nanowire composite hydrogel with high in-plane conductivity that stimulates a uniaxial electrochemical osmotic expansion is demonstrated. This materials system allows precisely controlled shape-morphing at only −1 V, where capacitive charging of the hydrogel bulk leads to a large uniaxial expansion of up to 300%, caused by the ingress of ≈700 water molecules per electron–ion pair. The material retains its state when turned off, which is ideal for electrotunable membranes as the inherent coupling between the expansion and mesoporosity enables electronic control of permeability for adaptive separation, fractionation, and distribution. Used as electrochemical osmotic hydrogel actuators, they achieve an electroactive pressure of up to 0.7 MPa (1.4 MPa vs dry) and a work density of ≈150 kJ m−3 (2 MJ m−3 vs dry). This new materials system paves the way to integrate actuation, sensing, and controlled permeation into advanced soft intelligent systems.
  •  
2.
  • Cheng, Ming, et al. (författare)
  • A Perylenediimide Tetramer-Based 3D Electron Transport Material for Efficient Planar Perovskite Solar Cell
  • 2017
  • Ingår i: Solar RRL. - : John Wiley & Sons. - 2367-198X. ; 1:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A perylenediimide (PDI) tetramer-based three dimensional (3D) molecular material, termed SFX-PDI4, has been designed, synthesized, and characterized. The low-lying HOMO and LUMO energy levels, high electron mobility and good film-formation property make it a promising electron transport material (ETM) in inverted planar perovskite solar cells (PSCs). The device exhibits a high power conversion efficiency (PCE) of 15.3% with negligible hysteresis, which can rival that of device based on PC61BM. These results demonstrate that three dimensional PDI-based molecular materials could serve as high performance ETMs in PSCs.
  •  
3.
  • Fu, Qiliang, et al. (författare)
  • Nanostructured Wood Hybrids for Fire-Retardancy Prepared by Clay Impregnation into the Cell Wall
  • 2017
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 9:41, s. 36154-36163
  • Tidskriftsartikel (refereegranskat)abstract
    • Eco-friendly materials need "green" fire-retardancy treatments, which offer opportunity for new wood nanotechnologies. Balsa wood (Ochroma pyramidale) was delignified to form a hierarchically structured and nanoporous scaffold mainly composed of cellulose nanofibrils. This nanocellulosic wood scaffold was impregnated with colloidal montmorillonite clay to form a nanostructured wood hybrid with high flame-retardancy. The nanoporous scaffold was characterized by scanning electron microscopy and gas adsorption. Flame-retardancy was evaluated by cone calorimetry, whereas thermal and thermo-oxidative stabilities were assessed by thermogravimetry. The location of well-distributed clay nanoplatelets inside the cell walls was confirmed by energy-dispersive X-ray analysis. This unique nanostructure dramatically increased the thermal stability because of thermal insulation, oxygen depletion, and catalytic charring effects. A coherent organic/inorganic charred residue was formed during combustion, leading to a strongly reduced heat release rate peak and reduced smoke generation.
  •  
4.
  • Hajian, Alireza, 1986-, et al. (författare)
  • Cellulose Nanopaper with Monolithically Integrated Conductive Micropatterns
  • 2019
  • Ingår i: Advanced Electronic Materials. - : Blackwell Publishing. - 2199-160X. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • This work presents a route to fabricate micropatterned conductive structures where the conductors are monolithically integrated with nanocellulose-based paper. To fabricate conductive features, microstructures are patterned on filter papers using wax-printing, followed by vacuum filtration of carbon nanotubes (CNTs) or silver nanowires (AgNWs) dispersed in aqueous cellulose nanofibrils (CNFs). These patterns are then laminated onto a pure CNF substrate (both in gel-state) and dried to form cellulose nanopapers with integrated conductive micropatterns. Resolutions of the conductive features are shown down to 400 µm wide, 250 nm thick, and with conductivity values of 115 ± 5 S cm −1 for the CNF–CNT and 3770 ± 230 S cm −1 for the CNF–AgNW micropatterns. The nanopaper and the conductive patterns both constitute random fibrous networks, and they display similar ductility and swelling behavior in water. Thus, the integrated conductive micropatterns can withstand folding, as well as wetting cycles. This stability of the micropatterns makes them useful in various devices based on nanocellulose substrates. As an example, an electroanalytical nanopaper device that operates in wet conditions is demonstrated.
  •  
5.
  • Hajian, Alireza (författare)
  • Cellulose–Assisted Dispersion of Carbon Nanotubes : From Colloids to Composites
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • It is a challenge to disperse nanoparticles to obtain a nanostructured composite. This thesis aims at providing a new route to fabricate carbon nanotube (CNT) composites and suggests mechanisms for nanocellulose–CNT interactions. This route is based on unmodified CNT dispersed in water with the help of nanocellulose. Chemical functionalization of the CNTs and the addition of surfactants are avoided. Thus, the mechanical and electrical properties of such nanotube composites can be improved.Cellulose derivatives can disperse and stabilize carbon nanotubes in water. Nanocellulose particles, such as cellulose nanofibrils (CNF), are a new form of cellulose derivatives that are able to disperse and stabilize untreated carbon nanotubes in water. The utilization of the hybrid CNF–CNT dispersions are shown to lead to strong nanostructured composites with high nanotube content and conductivity. The mechanism behind the dispersive action of nanocellulose for nanotubes is explored and studied in detail. The dispersive ability of the nanocellulose leads to improved properties of CNF–CNT composites.Apart from studies of structure and properties of composite fibers and films, two different functional materials are studied in detail. One is to form conductive patterns on cellulose nanopaper for the stable function of printed electronics in various environmental conditions and during handling. The second is to use a water-soluble cellulosic polymer–nanotube dispersion to fabricate superelastic aerogels without any chemical crosslinking or the addition of another component. This makes the aerogels easily recyclable (redispersible in water) and opens a new route for recyclable superelastic CNT composite aerogels.
  •  
6.
  • Hajian, Alireza, 1986-, et al. (författare)
  • Conductive and strong nanocomposites based on cellulose nanofibrils and carbon nanotubes
  • 2015
  • Ingår i: 20th International Conference on Composite Materials, ICCM 2015. - : International Committee on Composite Materials.
  • Konferensbidrag (refereegranskat)abstract
    • Single-wall carbon nanotubes (SWNTs) can be dispersed with the aid of cellulose nanofibrils (CNF) in aqueous medium. The dispersions have high stability and quality that can be utilized into self-assembly of functional composites having high electrical conductivity and strength. The composites were then carefully analyzed in terms of their mechanical and electrical properties as well as dispersion quality. 
  •  
7.
  •  
8.
  • Hajian, Alireza, 1986-, et al. (författare)
  • Recyclable and superelastic aerogels based on carbon nanotubes and carboxymethyl cellulose
  • 2018
  • Ingår i: Composites Science And Technology. - : Elsevier. - 0266-3538 .- 1879-1050. ; 159, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Deformation mechanisms are largely unknown for superelastic carbon nanotube (CNT) aerogels, and this hampers materials design efforts. The CNT network in the cell walls is typically crosslinked or connected by a thermoset polymer phase. In order to create a recyclable superelastic aerogel, unmodified single or multi-walled CNTs were dispersed in water by adding to aqueous carboxymethyl cellulose (CMC) solution. Directional freeze-drying was used to form honeycombs with cell walls of random-in-the-plane CNTs in CMC matrix. Cell wall morphology and porosity were studied and related to CNT type and content, as well as elastic or plastic buckling of the cell walls under deformation. CMC acts as a physical crosslinker for the CNTs in a porous cell wall. Aerogel structure and properties were characterized before and after recycling. The conductivity of the composite aerogel with a density of 10 kg/m3, 99% porosity and 50 wt % single-walled CNT exceeds 0.5 S/cm. The potential of these superelastic and conductive aerogels for applications such as mechanoresponsive materials was examined in cyclic conductivity tests at different strains. This opens a new route for recyclable superelastic CNT composite aerogels, avoiding material loss, chemical treatment or addition of other components.
  •  
9.
  • Hajian, Alireza, et al. (författare)
  • Understanding the Dispersive Action of Nanocellulose for Carbon Nanomaterials
  • 2017
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 17:3, s. 1439-1447
  • Tidskriftsartikel (refereegranskat)abstract
    • This work aims at understanding the excellent ability of nanocelluloses to disperse carbon nanomaterials (CNs) in aqueous media to form long-term stable colloidal dispersions without the need for chemical functionalization of the CNs or the use of surfactant. These dispersions are useful for composites with high CN content when seeking water-based, efficient, and green pathways for their preparation. To establish a comprehensive understanding of such dispersion mechanism, colloidal characterization of the dispersions has been combined with surface adhesion measurements using colloidal probe atomic force microscopy (AFM) in aqueous media. AFM results based on model surfaces of graphene and nanocellulose further suggest that there is an association between the nanocellulose and the CN. This association is caused by fluctuations of the counterions on the surface of the nanocellulose inducing dipoles in the sp2carbon lattice surface of the CNs. Furthermore, the charges on the nanocellulose will induce an electrostatic stabilization of the nanocellulose–CN complexes that prevents aggregation. On the basis of this understanding, nanocelluloses with high surface charge density were used to disperse and stabilize carbon nanotubes (CNTs) and reduced graphene oxide particles in water, so that further increases in the dispersion limit of CNTs could be obtained. The dispersion limit reached the value of 75 wt % CNTs and resulted in high electrical conductivity (515 S/cm) and high modulus (14 GPa) of the CNT composite nanopapers.
  •  
10.
  • Hamedi, Mahiar M., et al. (författare)
  • Highly Conducting, Strong Nanocomposites Based on Nanocellulose-Assisted Aqueous Dispersions of Single-Wall Carbon Nanotubes
  • 2014
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 8:3, s. 2467-2476
  • Tidskriftsartikel (refereegranskat)abstract
    • It is challenging to obtain high-quality dispersions of single-wall nanotubes (SWNTs) in composite matrix materials, in order to reach the full potential of mechanical and electronic properties. The most widely used matrix materials are polymers, and the route to achieving high quality dispersions of SWNT is mainly chemical functionalization of the SWNT. This leads to increased cost, a loss of strength and lower conductivity. In addition full potential of colloidal self-assembly cannot be fully exploited in a polymer matrix. This may limit the possibilities for assembly of highly ordered structural nanocomposites. Here we show that nanofibrillated cellulose (NFC) can act as an excellent aqueous dispersion agent for as-prepared SWNTs, making possible low-cost exfoliation and purification of SWNTs with dispersion limits exceeding 40 wt %. The NFC:SWNT dispersion may also offer a cheap and sustainable alternative for molecular self-assembly of advanced composites. We demonstrate semitransparent conductive films, aerogels and anisotropic microscale fibers with nanoscale composite structure. The NFC:SWNT nanopaper shows increased strength at 3 wt % SWNT, reaching a modulus of 133 GPa, and a strength of 307 MPa. The anisotropic microfiber composites have maximum conductivities above 200 S cm(-1) and current densities reaching 1400 A cm(-2).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy