SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hakkinen S.) "

Sökning: WFRF:(Hakkinen S.)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Manninen, H. E., et al. (författare)
  • EUCAARI ion spectrometer measurements at 12 European sites - analysis of new particle formation events
  • 2010
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 10:16, s. 7907-7927
  • Tidskriftsartikel (refereegranskat)abstract
    • We present comprehensive results on continuous atmospheric cluster and particle measurements in the size range similar to 1-42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) project. We focused on characterizing the spatial and temporal variation of new particle formation events and relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere). New particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, nucleation and growth rates of newly formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1-30% of the corresponding total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale.
  •  
4.
  •  
5.
  •  
6.
  • L. B. Almeida, Bilena, et al. (författare)
  • The transcription factor network of E. coli steers global responses to shifts in RNAP concentration
  • 2022
  • Ingår i: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 50:12, s. 6801-6819
  • Tidskriftsartikel (refereegranskat)abstract
    • The robustness and sensitivity of gene networks to environmental changes is critical for cell survival. How gene networks produce specific, chronologically ordered responses to genome-wide perturbations, while robustly maintaining homeostasis, remains an open question. We analysed if short- and mid-term genome-wide responses to shifts in RNA polymerase (RNAP) concentration are influenced by the known topology and logic of the transcription factor network (TFN) of Escherichia coli. We found that, at the gene cohort level, the magnitude of the single-gene, mid-term transcriptional responses to changes in RNAP concentration can be explained by the absolute difference between the gene's numbers of activating and repressing input transcription factors (TFs). Interestingly, this difference is strongly positively correlated with the number of input TFs of the gene. Meanwhile, short-term responses showed only weak influence from the TFN. Our results suggest that the global topological traits of the TFN of E. coli shape which gene cohorts respond to genome-wide stresses.
  •  
7.
  •  
8.
  • Chafik, L., et al. (författare)
  • Global linkages originating from decadal oceanic variability in the subpolar North Atlantic
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:20, s. 10909-10919
  • Tidskriftsartikel (refereegranskat)abstract
    • The anomalous decadal warming of the subpolar North Atlantic Ocean (SPNA), and the northward spreading of this warm water, has been linked to rapid Arctic sea ice loss and more frequent cold European winters. Recently, variations in this heat transport have also been reported to covary with global warming slowdown/acceleration periods via a Pacific climate response. We here examine the role of SPNA temperature variability in this Atlantic-Pacific climate connectivity. We find that the evolution of ocean heat content anomalies from the subtropics to the subpolar region, likely due to ocean circulation changes, coincides with a basin-wide Atlantic warming/cooling. This induces an Atlantic-Pacific sea surface temperature seesaw, which in turn, strengthens/weakens the Walker circulation and amplifies the Pacific decadal variability that triggers pronounced global-scale atmospheric circulation anomalies. We conclude that the decadal oceanic variability in the SPNA is an essential component of the tropical interactions between the Atlantic and Pacific Oceans.
  •  
9.
  • D'Andrea, S. D., et al. (författare)
  • Effect of Secondary Organic Aerosol Amount and Condensational Behavior on Global Aerosol Size Distributions
  • 2013
  • Ingår i: NUCLEATION AND ATMOSPHERIC AEROSOLS. - : American Institute of Physics (AIP). - 9780735411524 ; , s. 667-670
  • Konferensbidrag (refereegranskat)abstract
    • Recent research has shown that secondary organic aerosols (SOA) are major contributors to ultrafine particle growth to climatically relevant sizes, increasing global cloud condensation nuclei (CCN) concentrations within the continental boundary layer. Many models treat SOA solely as semivolatile, which leads to condensation of SOA proportional to the aerosol mass distribution; however, recent closure studies with field measurements show that a significant fraction of SOA condenses proportional to the aerosol surface area, which suggests a very low volatility. Additionally, while many global models contain only biogenic sources of SOA (with emissions generally 10-30 Tg yr(-1)), recent studies have shown a need for an additional source of SOA around 100 Tg yr(-1) correlated with anthropogenic carbon monoxide (CO) emissions is required to match measurements. Here, we explore the significance of these two findings using the GEOS-Chem-TOMAS global aerosol microphysics model. The percent change in the number of particles of size D-p > 40 nm (N40) within the continental boundary layer between the surface-area-and mass-distribution condensation schemes, both with the base biogenic SOA only, yielded a global increase of 8% but exceeds 100% in biogenically active regions. The percent change in N40 within the continental boundary layer between the base simulation (19 Tg yr(-1)) and the additional SOA (100 Tg yr(-1)) both using the surface area condensation scheme (very low volatility) yielded a global increase of 14%, and a global decrease in the number of particles of size D-p > 10 nm (N10) of 32%. These model simulations were compared to measured data from Hyytiala, Finland and other global locations and confirmed a decrease in the model-measurement bias. Thus, treating SOA as very low volatile as well as including additional SOA correlated with anthropogenic CO emissions causes a significant global increase in the number of climatically relevant sized particles, and therefore we must continue to refine our SOA treatments in aerosol microphysics models.
  •  
10.
  • D'Andrea, S. D., et al. (författare)
  • Understanding global secondary organic aerosol amount and size-resolved condensational behavior
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:22, s. 11519-11534
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent research has shown that secondary organic aerosols (SOA) are major contributors to ultrafine particle growth to climatically relevant sizes, increasing global cloud condensation nuclei (CCN) concentrations within the continental boundary layer (BL). However, there are three recent developments regarding the condensation of SOA that lead to uncertainties in the contribution of SOA to particle growth and CCN concentrations: (1) while many global models contain only biogenic sources of SOA (with annual production rates generally 10-30 Tg yr(-1)), recent studies have shown that an additional source of SOA around 100 Tg yr(-1) correlated with anthropogenic carbon monoxide (CO) emissions may be required to match measurements. (2) Many models treat SOA solely as semi-volatile, which leads to condensation of SOA proportional to the aerosol mass distribution; however, recent closure studies with field measurements show nucleation mode growth can be captured only if it is assumed that a significant fraction of SOA condenses proportional to the Fuchs-corrected aerosol surface area. This suggests a very low volatility of the condensing vapors. (3) Other recent studies of particle growth show that SOA con-densation at sizes smaller than 10 nm and that size-dependent growth rate parameterizations (GRP) are needed to match measurements. We explore the significance of these three findings using GEOS-Chem-TOMAS global aerosol microphysics model and observations of aerosol size distributions around the globe. The change in the concentration of particles of size D-p > 40 nm (N40) within the BL assuming surface-area condensation compared to mass-distribution net condensation yielded a global increase of 11% but exceeded 100% in biogenically active regions. The percent change in N40 within the BL with the inclusion of the additional 100 Tg SOAyr(-1) compared to the base simulation solely with biogenic SOA emissions (19 Tg yr-1) both using surface area condensation yielded a global increase of 13.7 %, but exceeded 50% in regions with large CO emissions. The inclusion of two different GRPs in the additional-SOA case both yielded a global increase in N40 of < 1 %, however exceeded 5% in some locations in the most extreme case. All of the model simulations were compared to measured data obtained from diverse locations around the globe and the results confirmed a decrease in the model-measurement bias and improved slope for comparing modeled to measured CCN number concentration when non-volatile SOA was assumed and the extra SOA was included.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy