SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hales Antonio) "

Sökning: WFRF:(Hales Antonio)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Asaki, Yoshiharu, et al. (författare)
  • ALMA High-frequency Long Baseline Campaign in 2021 : Highest Angular Resolution Submillimeter Wave Images for the Carbon-rich Star R Lep
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 958:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atacama Large Millimeter/submillimeter Array (ALMA) was used in 2021 to image the carbon-rich evolved star R Lep in Bands 8-10 (397-908 GHz) with baselines up to 16 km. The goal was to validate the calibration, using band-to-band (B2B) phase referencing with a close phase calibrator J0504-1512, 1.degrees 2 from R Lep in this case, and the imaging procedures required to obtain the maximum angular resolution achievable with ALMA. Images of the continuum emission and the hydrogen cyanide (HCN) maser line at 890.8 GHz, from the J = 10-9 transition between the (1110) and (0400) vibrationally excited states, achieved angular resolutions of 13, 6, and 5 mas in Bands 8-10, respectively. Self-calibration (self-cal) was used to produce ideal images to compare with the B2B phase referencing technique. The continuum emission was resolved in Bands 9 and 10, leaving too little flux for the self-cal of the longest baselines, so these comparisons are made at coarser resolution. Comparisons showed that B2B phase referencing provided phase corrections sufficient to recover 92%, 83%, and 77% of the ideal image continuum flux densities. The HCN maser was sufficiently compact to obtain self-cal solutions in Band 10 for all baselines (up to 16 km). In Band 10, B2B phase referencing as compared to the ideal images recovered 61% and 70% of the flux density for the HCN maser and continuum, respectively.
  •  
2.
  • Cataldi, Gianni, et al. (författare)
  • Primordial or Secondary? Testing Models of Debris Disk Gas with ALMA*
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 951:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin and evolution of gas in debris disks are still not well understood. Secondary gas production from cometary material or a primordial origin have been proposed. So far, observations have mostly concentrated on CO, with only a few C observations available. We overview the C and CO content of debris disk gas and test state-of-the-art models. We use new and archival Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO and C i emission, complemented by C ii data from Herschel, for a sample of 14 debris disks. This expands the number of disks with ALMA measurements of both CO and C i by 10 disks. We present new detections of C i emission toward three disks: HD 21997, HD 121191, and HD 121617. We use a simple disk model to derive gas masses and column densities. We find that current state-of-the-art models of secondary gas production overpredict the C-0 content of debris disk gas. This does not rule out a secondary origin, but might indicate that the models require an additional C removal process. Alternatively, the gas might be produced in transient events rather than a steady-state collisional cascade. We also test a primordial gas origin by comparing our results to a simplified thermochemical model. This yields promising results, but more detailed work is required before a conclusion can be reached. Our work demonstrates that the combination of C and CO data is a powerful tool to advance our understanding of debris disk gas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy