SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hall Randy A) "

Search: WFRF:(Hall Randy A)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2019
  • Journal article (peer-reviewed)
  •  
2.
  • Thompson, Paul M., et al. (author)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • In: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Journal article (peer-reviewed)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
3.
  • Hamann, Joerg, et al. (author)
  • International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein-Coupled Receptors
  • 2015
  • In: Pharmacological Reviews. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0031-6997 .- 1521-0081. ; 67:2, s. 338-367
  • Research review (peer-reviewed)abstract
    • The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.
  •  
4.
  • Liebscher, Ines, et al. (author)
  • New functions and signaling mechanisms for the class of adhesion G protein-coupled receptors
  • 2014
  • In: Annals of the New York Academy of Sciences. - : Wiley. - 0077-8923 .- 1749-6632. ; 1333, s. 43-64
  • Journal article (peer-reviewed)abstract
    • The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region. In addition, all aGPCRs but one (GPR123) contain a GPCR autoproteolysis-inducing (GAIN) domain that mediates autoproteolytic cleavage at the GPCR autoproteolysis site motif to generate N- and a C-terminal fragments (NTF and CTF, respectively) during protein maturation. Subsequently, the NTF and CTF are associated noncovalently as a heterodimer at the plasma membrane. While the biological function of the GAIN domain-mediated autocleavage is not fully understood, mounting evidence suggests that the NTF and CTF possess distinct biological activities in addition to their function as a receptor unit. We discuss recent advances in understanding the biological functions, signaling mechanisms, and disease associations of the aGPCRs.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4
Type of publication
journal article (3)
research review (1)
Type of content
peer-reviewed (4)
Author/Editor
Schiöth, Helgi B. (2)
Franke, Barbara (1)
Kelly, Daniel (1)
Bengtsson-Palme, Joh ... (1)
Nilsson, Henrik (1)
Kelly, Ryan (1)
show more...
Li, Ying (1)
Moore, Matthew D. (1)
Landén, Mikael, 1966 (1)
Liberg, Benny (1)
Ekman, Carl-Johan (1)
Ching, Christopher R ... (1)
Agartz, Ingrid (1)
Alda, Martin (1)
Brouwer, Rachel M (1)
Cannon, Dara M (1)
Hajek, Tomas (1)
Malt, Ulrik F (1)
McDonald, Colm (1)
Melle, Ingrid (1)
Westlye, Lars T (1)
Thompson, Paul M (1)
Andreassen, Ole A (1)
Liu, Fang (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Khatlani, T (1)
Kahan, Thomas (1)
Wang, Lei (1)
Sörelius, Karl, 1981 ... (1)
Batra, Jyotsna (1)
Roobol, Monique J (1)
Nyberg, Lars (1)
Backman, Lars (1)
Yan, Hong (1)
Schmidt, Axel (1)
Lorkowski, Stefan (1)
Thrift, Amanda G. (1)
Zhang, Wei (1)
Hammerschmidt, Sven (1)
Patil, Chandrashekha ... (1)
Fredriksson, Robert (1)
van der Wee, Nic J. (1)
Wang, Jun (1)
Pollesello, Piero (1)
Conesa, Ana (1)
El-Esawi, Mohamed A. (1)
show less...
University
Uppsala University (3)
University of Gothenburg (2)
Stockholm University (2)
Karolinska Institutet (2)
Umeå University (1)
Halmstad University (1)
show more...
Lund University (1)
Chalmers University of Technology (1)
show less...
Language
English (4)
Research subject (UKÄ/SCB)
Medical and Health Sciences (4)
Natural sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view