SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ham Seungmin) "

Sökning: WFRF:(Ham Seungmin)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dehvari, Nodi, et al. (författare)
  • The metabolic effects of mirabegron are mediated primarily by beta(3)-adrenoceptors
  • 2020
  • Ingår i: Pharmacology Research & Perspectives. - : Wiley. - 2052-1707. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The beta(3)-adrenoceptor agonist mirabegron is approved for use for overactive bladder and has been purported to be useful in the treatment of obesity-related metabolic diseases in humans, including those involving disturbances of glucose homeostasis. We investigated the effect of mirabegron on glucose homeostasis with in vitro and in vivo models, focusing on its selectivity at beta-adrenoceptors, ability to cause browning of white adipocytes, and the role of UCP1 in glucose homeostasis. In mouse brown, white, and brite adipocytes, mirabegron-mediated effects were examined on cyclic AMP, UCP1 mRNA, [H-3]-2-deoxyglucose uptake, cellular glycolysis, and O(2)consumption. Mirabegron increased cyclic AMP levels, UCP1 mRNA content, glucose uptake, and cellular glycolysis in brown adipocytes, and these effects were either absent or reduced in white adipocytes. In brite adipocytes, mirabegron increased cyclic AMP levels and UCP1 mRNA content resulting in increased UCP1-mediated oxygen consumption, glucose uptake, and cellular glycolysis. The metabolic effects of mirabegron in both brown and brite adipocytes were primarily due to actions at beta(3)-adrenoceptors as they were largely absent in adipocytes derived from beta(3)-adrenoceptor knockout mice. In vivo, mirabegron increased whole body oxygen consumption, glucose uptake into brown and inguinal white adipose tissue, and improved glucose tolerance, all effects that required the presence of the beta(3)-adrenoceptor. Furthermore, in UCP1 knockout mice, the effects of mirabegron on glucose tolerance were attenuated. Thus, mirabegron had effects on cellular metabolism in adipocytes that improved glucose handling in vivo, and were primarily due to actions at the beta(3)-adrenoceptor.
  •  
2.
  • Ham, Seungmin, et al. (författare)
  • Role of G protein-coupled receptor kinases (GRKs) in β2-adrenoceptor-mediated glucose uptake
  • 2024
  • Ingår i: Pharmacology Research & Perspectives. - 2052-1707. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Truncation of the C-terminal tail of the beta(2)-AR, transfection of beta ARKct or over-expression of a kinase-dead GRK mutant reduces isoprenaline-stimulated glucose uptake, indicating that GRK is important for this response. We explored whether phosphorylation of the beta(2)-AR by GRK2 has a role in glucose uptake or if this response is related to the role of GRK2 as a scaffolding protein. CHO-GLUT4myc cells expressing wild-type and mutant beta(2)-ARs were generated and receptor affinity for [H-3]-CGP12177A and density of binding sites determined together with the affinity of isoprenaline and BRL37344. Following receptor activation by beta(2)-AR agonists, cAMP accumulation, GLUT4 translocation, [H-3]-2-deoxyglucose uptake, and beta(2)-AR internalization were measured. Bioluminescence resonance energy transfer was used to investigate interactions between beta(2)-AR and beta-arrestin2 or between beta(2)-AR and GRK2. Glucose uptake after siRNA knockdown or GRK inhibitors was measured in response to beta(2)-AR agonists. BRL37344 was a poor partial agonist for cAMP generation but displayed similar potency and efficacy to isoprenaline for glucose uptake and GLUT4 translocation. These responses to beta(2)-AR agonists occurred in CHO-GLUT4myc cells expressing beta(2)-ARs lacking GRK or GRK/PKA phosphorylation sites as well as in cells expressing the wild-type beta(2)-AR. However, beta(2)-ARs lacking phosphorylation sites failed to recruit beta-arrestin2 and did not internalize. GRK2 knock-down or GRK2 inhibitors decreased isoprenaline-stimulated glucose uptake in rat L6 skeletal muscle cells. Thus, GRK phosphorylation of the beta(2)-AR is not associated with isoprenaline- or BRL37344-stimulated glucose uptake. However, GRKs acting as scaffold proteins are important for glucose uptake as GRK2 knock-down or GRK2 inhibition reduces isoprenaline-stimulated glucose uptake.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy