SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hamm Gregory) "

Sökning: WFRF:(Hamm Gregory)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bäckström, Erica, et al. (författare)
  • Uncovering the regional localization of inhaled salmeterol retention in the lung
  • 2018
  • Ingår i: Drug Delivery. - : Taylor & Francis Group. - 1071-7544 .- 1521-0464. ; 25:1, s. 838-845
  • Tidskriftsartikel (refereegranskat)abstract
    • Treatment of respiratory disease with a drug delivered via inhalation is generally held as being beneficial as it provides direct access to the lung target site with a minimum systemic exposure. There is however only limited information of the regional localization of drug retention following inhalation. The aim of this study was to investigate the regional and histological localization of salmeterol retention in the lungs after inhalation and to compare it to systemic administration. Lung distribution of salmeterol delivered to rats via nebulization or intravenous (IV) injection was analyzed with high-resolution mass spectrometry imaging (MSI). Salmeterol was widely distributed in the entire section at 5 min after inhalation, by 15 min it was preferentially retained in bronchial tissue. Via a novel dual-isotope study, where salmeterol was delivered via inhalation and d(3)-salmeterol via IV to the same rat, could the effective gain in drug concentration associated with inhaled delivery relative to IV, expressed as a site-specific lung targeting factor, was 5-, 31-, and 45-fold for the alveolar region, bronchial sub-epithelium and epithelium, respectively. We anticipate that this MSI-based framework for quantifying regional and histological lung targeting by inhalation will accelerate discovery and development of local and more precise treatments of respiratory disease.
  •  
2.
  • Hamm, Gregory R., et al. (författare)
  • Revealing the Regional Localization and Differential Lung Retention of Inhaled Compounds by Mass Spectrometry Imaging
  • 2020
  • Ingår i: Journal of Aerosol Medicine. - : Mary Ann Liebert Inc. - 1941-2711 .- 1941-2703. ; 33:1, s. 43-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: For the treatment of respiratory disease, inhaled drug delivery aims to provide direct access to pharmacological target sites while minimizing systemic exposure. Despite this long-held tenet of inhaled therapeutic advantage, there are limited data of regional drug localization in the lungs after inhalation. The aim of this study was to investigate the distribution and retention of different chemotypes typifying available inhaled drugs [slowly dissolving neutral fluticasone propionate (FP) and soluble bases salmeterol and salbutamol] using mass spectrometry imaging (MSI).Methods: Salmeterol, salbutamol, and FP were simultaneously delivered by inhaled nebulization to rats. In the same animals, salmeterol-d(3), salbutamol-d(3), and FP-d(3) were delivered by intravenous (IV) injection. Samples of lung tissue were obtained at 2- and 30-minute postdosing, and high-resolution MSI was used to study drug distribution and retention.Results: IV delivery resulted in homogeneous lung distribution for all molecules. In comparison, while inhalation also gave rise to drug presence in the entire lung, there were regional chemotype-dependent areas of higher abundance. At the 30-minute time point, inhaled salmeterol and salbutamol were preferentially retained in bronchiolar tissue, whereas FP was retained in all regions of the lungs.Conclusion: This study clearly demonstrates that inhaled small molecule chemotypes are differentially distributed in lung tissue after inhalation, and that high-resolution MSI can be applied to study these retention patterns.
  •  
3.
  •  
4.
  • Strittmatter, Nicole, et al. (författare)
  • Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging
  • 2021
  • Ingår i: Journal of the American Society for Mass Spectrometry. - : American Chemical Society (ACS). - 1044-0305 .- 1879-1123. ; 32:12, s. 2791-2802
  • Tidskriftsartikel (refereegranskat)abstract
    • A more complete and holistic view on host-microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
  •  
5.
  • Strittmatter, Nicole, et al. (författare)
  • Method To Visualize the Intratumor Distribution and Impact of Gemcitabine in Pancreatic Ductal Adenocarcinoma by Multimodal Imaging
  • 2022
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 94:3, s. 1795-1803
  • Tidskriftsartikel (refereegranskat)abstract
    • Gemcitabine (dFdC) is a common treatment for pancreatic cancer; however, it is thought that treatment may fail because tumor stroma prevents drug distribution to tumor cells. Gemcitabine is a pro-drug with active metabolites generated intracellularly; therefore, visualizing the distribution of parent drug as well as its metabolites is important. A multimodal imaging approach was developed using spatially coregistered mass spectrometry imaging (MSI), imaging mass cytometry (IMC), multiplex immunofluorescence microscopy (mIF), and hematoxylin and eosin (H&E) staining to assess the local distribution and metabolism of gemcitabine in tumors from a genetically engineered mouse model of pancreatic cancer (KPC) allowing for comparisons between effects in the tumor tissue and its microenvironment. Mass spectrometry imaging (MSI) enabled the visualization of the distribution of gemcitabine (100 mg/kg), its phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP, and the inactive metabolite dFdU. Distribution was compared to small-molecule ATR inhibitor AZD6738 (25 mg/kg), which was codosed. Gemcitabine metabolites showed heterogeneous distribution within the tumor, which was different from the parent compound. The highest abundance of dFdCMP, dFdCDP, and dFdCTP correlated with distribution of endogenous AMP, ADP, and ATP in viable tumor cell regions, showing that gemcitabine active metabolites are reaching the tumor cell compartment, while AZD6738 was located to nonviable tumor regions. The method revealed that the generation of active, phosphorylated dFdC metabolites as well as treatment-induced DNA damage primarily correlated with sites of high proliferation in KPC PDAC tumor tissue, rather than sites of high parent drug abundance.
  •  
6.
  • Swales, John G., et al. (författare)
  • Quantitation of Endogenous Metabolites in Mouse Tumors Using Mass-Spectrometry Imaging
  • 2018
  • Ingår i: Analytical Chemistry. - : AMER CHEMICAL SOC. - 0003-2700 .- 1520-6882. ; 90:10, s. 6051-6058
  • Tidskriftsartikel (refereegranskat)abstract
    • Described is a quantitative-mass-spectrometry-imaging (qMSI) methodology for the analysis of lactate and glutamate distributions in order to delineate heterogeneity among mouse tumor models used to support drug-discovery efficacy testing. We evaluate and report on preanalysis-stabilization methods aimed at improving the reproducibility and efficiency of quantitative assessments of endogenous molecules in tissues. Stability experiments demonstrate that optimum stabilization protocols consist of frozen-tissue embedding, post-tissue-sectioning desiccation, and storage at -80 degrees C of tissue sections sealed in vacuum-tight containers. Optimized stabilization protocols are used in combination with qMSI methodology for the absolute quantitation of lactate and glutamate in tumors, incorporating the use of two different stable-isotope-labeled versions of each analyte and spectral-clustering performed on each tissue section using k-means clustering to allow region-specific, pixel-by-pixel quantitation. Region-specific qMSI was used to screen different tumor models and identify a phenotype that has low lactate heterogeneity, which will enable accurate measurements of lactate modulation in future drug-discovery studies. We conclude that using optimized qMSI protocols, it is possible to quantify endogenous metabolites within tumors, and region-specific quantitation can provide valuable insight into tissue heterogeneity and the tumor microenvironment.
  •  
7.
  • Vallianatou, Theodosia, et al. (författare)
  • A mass spectrometry imaging approach for investigating how drug-drug interactions influence drug blood-brain barrier permeability
  • 2018
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 172, s. 808-816
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a high need to develop quantitative imaging methods capable of providing detailed brain localization information of several molecular species simultaneously. In addition, extensive information on the effect of the blood-brain barrier on the penetration, distribution and efficacy of neuroactive compounds is required. Thus, we have developed a mass spectrometry imaging method to visualize and quantify the brain distribution of drugs with varying blood-brain barrier permeability. With this approach, we were able to determine blood-brain barrier transport of different drugs and define the drug distribution in very small brain structures (e.g., choroid plexus) due to the high spatial resolution provided. Simultaneously, we investigated the effect of drug-drug interactions by inhibiting the membrane transporter multidrug resistance 1 protein. We propose that the described approach can serve as a valuable analytical tool during the development of neuroactive drugs, as it can provide physiologically relevant information often neglected by traditional imaging technologies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy