SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hammarsjo Anna) "

Sökning: WFRF:(Hammarsjo Anna)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Runheim, Hannes, et al. (författare)
  • The cost-effectiveness of whole genome sequencing in neurodevelopmental disorders
  • 2023
  • Ingår i: Scientific Reports. - : NATURE PORTFOLIO. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole genome sequencing (WGS) has the potential to be a comprehensive genetic test, especially relevant for individuals with neurodevelopmental disorders, syndromes and congenital malformations. However, the cost consequences of using whole genome sequencing as a first-line genetic test for these individuals are not well understood. The study objective was to compare the healthcare costs and diagnostic yield when WGS is performed as the first-line test instead of chromosomal microarray analysis (CMA). Two cohorts were analyzed retrospectively using register data, cohort CMA (418 patients referred for CMA at the department of Clinical Genetics, Karolinska University Hospital, during 2015) and cohort WGS (89 patients included in a WGS-first prospective study in 2017). The analysis compared healthcare consumption over a 2-year period after referral for genetic testing, the diagnostic yield over a 2- and 3-year period after referral was also compiled. The mean healthcare cost per patient in cohort WGS was $2,339 lower compared to cohort CMA ($ - 2339, 95% CI - 12,238-7561; P = 0.64) including higher costs for genetic investigations ($1065, 95% CI 834-1295; P < 0.001) and lower costs for outpatient care ($ - 2330, 95% CI - 3992 to (- 669); P = 0.006). The diagnostic yield was 23% higher for cohort WGS (cohort CMA 20.1%, cohort WGS 24.7%) (0.046, 95% CI - 0.053-0.145; P = 0.36). WGS as a first-line diagnostic test for individuals with neurodevelopmental disorders is associated with statistically non-significant lower costs and higher diagnostic yield compared with CMA. This indicates that prioritizing WGS over CMA in health care decision making will yield positive expected outcomes as well as showing a need for further research.
  •  
2.
  • Kuchinskaya, Ekaterina, et al. (författare)
  • Extending the phenotype of BMPER-related skeletal dysplasias to ischiospinal dysostosis
  • 2016
  • Ingår i: Orphanet Journal of Rare Diseases. - : BIOMED CENTRAL LTD. - 1750-1172. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Ischiospinal dysostosis (ISD) is a polytopic dysostosis characterized by ischial hypoplasia, multiple segmental anomalies of the cervicothoracic spine, hypoplasia of the lumbrosacral spine and occasionally associated with nephroblastomatosis. ISD is similar to, but milder than the lethal/semilethal condition termed diaphanospondylodysostosis (DSD), which is associated with homozygous or compound heterozygous mutations of bone morphogenetic protein-binding endothelial regulator protein (BMPER) gene. Here we report for the first time biallelic BMPER mutations in two patients with ISD, neither of whom had renal abnormalities. Our data supports and further extends the phenotypic variability of BMPER-related skeletal disorders.
  •  
3.
  • Young, Cameron, et al. (författare)
  • A hypomorphic variant in the translocase of the outer mitochondrial membrane complex subunit TOMM7 causes short stature and developmental delay
  • 2023
  • Ingår i: Human Genetics and Genomics Advances. - : ELSEVIER. - 2666-2477. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial diseases are a heterogeneous group of genetic disorders caused by pathogenic variants in genes encoding gene products that regulate mitochondrial function. These genes are located either in the mitochondrial or in the nuclear genome. The TOMM7 gene encodes a regulatory subunit of the translocase of outer mitochondrial membrane (TOM) complex that plays an essential role in translocation of nuclear-encoded mitochondrial proteins into mitochondria. We report an individual with a homozygous variant in TOMM7 (c.73T>C, p.Trp25Arg) that presented with a syndromic short stature, skeletal abnormalities, muscle hypotonia, microvesicular liver steatosis, and developmental delay. Analysis of mouse models strongly suggested that the identified variant is hypomorphic because mice homozygous for this variant showed a milder phenotype than those with homozygous Tomm7 deletion. These Tomm7 mutant mice show pathological changes consistent with mitochondrial dysfunction, including growth defects, severe lipoatrophy, and lipid accumulation in the liver. These mice die prematurely following a rapidly progressive weight loss during the last week of their lives. Tomm7 deficiency causes a unique alteration in mitochondrial function; despite the bioenergetic deficiency, mutant cells show increased oxygen consumption with normal responses to electron transport chain (ETC) inhibitors, suggesting that Tomm7 deficiency leads to an uncoupling between oxidation and ATP synthesis without impairing the function of the tricarboxylic cycle metabolism or ETC. This study presents evidence that a hypomorphic variant in one of the genes encoding a subunit of the TOM complex causes mitochondrial disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy