SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hammarström Martin) "

Sökning: WFRF:(Hammarström Martin)

  • Resultat 1-10 av 69
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schütz, Patrick, et al. (författare)
  • Comparative structural analysis of human DEAD-box RNA helicases
  • 2010
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 5:9
  • Tidskriftsartikel (refereegranskat)abstract
    • DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members.
  •  
2.
  • Almstedt, Karin, 1980-, et al. (författare)
  • Unfolding a folding disease: folding, misfolding and aggregation of the marble brain syndrome-associated mutant H107Y of human carbonic anhydrase II
  • 2004
  • Ingår i: Journal of Molecular Biology. - Oxford : Elsevier. - 0022-2836 .- 1089-8638. ; 342:2, s. 619-633
  • Tidskriftsartikel (refereegranskat)abstract
    • Most loss-of-function diseases are caused by aberrant folding of important proteins. These proteins often misfold due to mutations. The disease marble brain syndrome (MBS), known also as carbonic anhydrase II deficiency syndrome (CADS), can manifest in carriers of point mutations in the human carbonic anhydrase II (HCA II) gene. One mutation associated with MBS entails the His107Tyr substitution. Here, we demonstrate that this mutation is a remarkably destabilizing folding mutation. The loss-of-function is clearly a folding defect, since the mutant shows 64% of CO2 hydration activity compared to that of the wild-type at low temperature where the mutant is folded. On the contrary, its stability towards thermal and guanidine hydrochloride (GuHCl) denaturation is highly compromised. Using activity assays, CD, fluorescence, NMR, cross-linking, aggregation measurements and molecular modeling, we have mapped the properties of this remarkable mutant. Loss of enzymatic activity had a midpoint temperature of denaturation (Tm) of 16 °C for the mutant compared to 55 °C for the wild-type protein. GuHCl-denaturation (at 4 °C) showed that the native state of the mutant was destabilized by 9.2 kcal/mol. The mutant unfolds through at least two equilibrium intermediates; one novel intermediate that we have termed the molten globule light state and, after further denaturation, the classical molten globule state is populated. Under physiological conditions (neutral pH; 37 °C), the His107Tyr mutant will populate the molten globule light state, likely due to novel interactions between Tyr107 and the surroundings of the critical residue Ser29 that destabilize the native conformation. This intermediate binds the hydrophobic dye 8-anilino-1-naphthalene sulfonic acid (ANS) but not as strong as the molten globule state, and near-UV CD reveals the presence of significant tertiary structure. Notably, this intermediate is not as prone to aggregation as the classical molten globule. As a proof of concept for an intervention strategy with small molecules, we showed that binding of the CA inhibitor acetazolamide increases the stability of the native state of the mutant by 2.9 kcal/mol in accordance with its strong affinity. Acetazolamide shifts the Tm to 34 °C that protects from misfolding and will enable a substantial fraction of the enzyme pool to survive physiological conditions.
  •  
3.
  • Collins, Ruairi, et al. (författare)
  • Biochemical discrimination between selenium and sulfur 1 : a single residue provides selenium specificity to human selenocysteine lyase
  • 2012
  • Ingår i: PLoS One. - Stockholm : Karolinska Institutet, Dept of Medical Biochemistry and Biophysics. - 1932-6203.
  • Tidskriftsartikel (refereegranskat)abstract
    • Selenium and sulfur are two closely related basic elements utilized in nature for a vast array of biochemical reactions. While toxic at higher concentrations, selenium is an essential trace element incorporated into selenoproteins as selenocysteine (Sec), the selenium analogue of cysteine (Cys). Sec lyases (SCLs) and Cys desulfurases (CDs) catalyze the removal of selenium or sulfur from Sec or Cys and generally act on both substrates. In contrast, human SCL (hSCL) is specific for Sec although the only difference between Sec and Cys is the identity of a single atom. The chemical basis of this selenium-over-sulfur discrimination is not understood. Here we describe the X-ray crystal structure of hSCL and identify Asp146 as the key residue that provides the Sec specificity. A D146K variant resulted in loss of Sec specificity and appearance of CD activity. A dynamic active site segment also provides the structural prerequisites for direct product delivery of selenide produced by Sec cleavage, thus avoiding release of reactive selenide species into the cell. We thus here define a molecular determinant for enzymatic specificity discrimination between a single selenium versus sulfur atom, elements with very similar chemical properties. Our findings thus provide molecular insights into a key level of control in human selenium and selenoprotein turnover and metabolism.
  •  
4.
  • Eltahir, mohmo394, et al. (författare)
  • Profiling of donor-specific immune effector signatures in response to rituximab in a human whole blood loop assay using blood from CLL patients
  • 2021
  • Ingår i: International Immunopharmacology. - : Elsevier. - 1567-5769 .- 1878-1705. ; 90
  • Tidskriftsartikel (refereegranskat)abstract
    • Rituximab is widely used in the treatment of haematological malignancies, including chronic lymphocytic leukaemia (CLL), the most common leukaemia in adults. However, some patients, especially those with high tumour burden, develop cytokine release syndrome (CRS). It is likely that more patients will develop therapy linked CRS in the future due to the implementation of other immunotherapies, such as CAR T-cell, for many malignancies. Current methods for CRS risk assessment are limited, hence there is a need to develop new methods. To better recapitulate an in vivo setting, we implemented a unique human whole blood "loop" system to study patient-specific immune responses to rituximab in blood derived from CLL patients. Upon rituximab infusion, both complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) profiles were evident in CLL patient blood, coincident with CLL cell depletion. Whereas B cell depletion is induced in healthy persons in the blood loop, only patients display B cell depletion coupled with CRS. With the exception of one donor who lacked NK cells, all other five patients displayed variable B cell depletion along with CRS profile. Additionally, inhibition of CDC or ADCC via either inhibitors or antibody Fc modification resulted in skewing of the immune killing mechanism consistent with published literature. Herein we have shown that the human whole blood loop model can be applied using blood from a specific indication to build a disease-specific CRS and immune activation profiling ex vivo system. Other therapeutic antibodies used for other indications may benefit from antibody characterization in a similar setting.
  •  
5.
  • Gad, Helge, et al. (författare)
  • MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool
  • 2014
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 508:7495, s. 215-221
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bindin the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.
  •  
6.
  • Karlberg, Tobias, et al. (författare)
  • Structure of human argininosuccinate synthetase.
  • 2008
  • Ingår i: Acta Crystallogr D Biol Crystallogr. - 0907-4449. ; 64:Pt 3, s. 279-86
  • Tidskriftsartikel (refereegranskat)abstract
    • Argininosuccinate synthetase catalyzes the transformation of citrulline and aspartate into argininosuccinate and pyrophosphate using the hydrolysis of ATP to AMP and pyrophosphate. This enzymatic process constitutes the rate-limiting step in both the urea and arginine-citrulline cycles. Previous studies have investigated the crystal structures of argininosuccinate synthetase from bacterial species. In this work, the first crystal structure of human argininosuccinate synthetase in complex with the substrates citrulline and aspartate is presented. The human enzyme is compared with structures of argininosuccinate synthetase from bacteria. In addition, the structure also provides new insights into the function of the numerous clinical mutations identified in patients with type I citrullinaemia (also known as classic citrullinaemia).
  •  
7.
  • Lindmark, Gudrun, et al. (författare)
  • qRT-PCR analysis of CEACAM5, KLK6, SLC35D3, MUC2 and POSTN in colon cancer lymph nodes : An improved method for assessment of tumor stage and prognosis
  • 2024
  • Ingår i: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 154:3, s. 573-584
  • Tidskriftsartikel (refereegranskat)abstract
    • One fourth of colorectal cancer patients having curative surgery will relapse of which the majority will die. Lymph node (LN) metastasis is the single most important prognostic factor and a key factor when deciding on postoperative treatment. Presently, LN metastases are identified by histopathological examination, a subjective method analyzing only a small LN volume and giving no information on tumor aggressiveness. To better identify patients at risk of relapse we constructed a qRT-PCR test, ColoNode, that determines levels of CEACAM5, KLK6, SLC35D3, MUC2 and POSTN mRNAs. Combined these biomarkers estimate the tumor cell load and aggressiveness allocating patients to risk categories with low (0, −1), medium (1), high (2) and very high (3) risk of recurrence. Here we present result of a prospective, national multicenter study including 196 colon cancer patients from 8 hospitals. On average, 21 LNs/patient, totally 4698 LNs, were examined by both histopathology and ColoNode. At 3-year follow-up, 36 patients had died from colon cancer or lived with recurrence. ColoNode identified all patients that were identified by histopathology and in addition 9 patients who were undetected by histopathology. Thus, 25% of the patients who recurred were identified by ColoNode only. Multivariate Cox regression analysis proved ColoNode (1, 2, 3 vs 0, −1) as a highly significant risk factor with HR 4.24 [95% confidence interval, 1.42-12.69, P =.01], while pTN-stage (III vs I/II) lost its univariate significance. In conclusion, ColoNode surpassed histopathology by identifying a significantly larger number of patients with future relapse and will be a valuable tool for decisions on postoperative treatment.
  •  
8.
  •  
9.
  • Matuozzo, D, et al. (författare)
  • Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
  • 2022
  • Ingår i: medRxiv : the preprint server for health sciences. - : Cold Spring Harbor Laboratory.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • BackgroundWe previously reported inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity in 1-5% of unvaccinated patients with life-threatening COVID-19, and auto-antibodies against type I IFN in another 15-20% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3,269 unvaccinated patients with life-threatening COVID-19 (1,301 previously reported and 1,968 new patients), and 1,373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. A quarter of the patients tested had antibodies against type I IFN (234 of 928) and were excluded from the analysis.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants wasTLR7, with an OR of 27.68 (95%CI:1.5-528.7,P=1.1×10−4), in analyses restricted to biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70 [95%CI:1.3-8.2],P=2.1×10−4). Adding the recently reportedTYK2COVID-19 locus strengthened this enrichment, particularly under a recessive model (OR=19.65 [95%CI:2.1-2635.4];P=3.4×10−3). When these 14 loci andTLR7were considered, all individuals hemizygous (n=20) or homozygous (n=5) for pLOF or bLOF variants were patients (OR=39.19 [95%CI:5.2-5037.0],P=4.7×10−7), who also showed an enrichment in heterozygous variants (OR=2.36 [95%CI:1.0-5.9],P=0.02). Finally, the patients with pLOF or bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years;P=1.68×10−5).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old.
  •  
10.
  • Matuozzo, Daniela, et al. (författare)
  • Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19.
  • 2023
  • Ingår i: Genome medicine. - 1756-994X. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in~80% of cases.We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1×10-4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1×10-4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4×10-3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7×10-8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68×10-5).Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60years old.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 69
Typ av publikation
tidskriftsartikel (56)
annan publikation (6)
doktorsavhandling (4)
konferensbidrag (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (54)
övrigt vetenskapligt/konstnärligt (12)
populärvet., debatt m.m. (3)
Författare/redaktör
Hammarström, Leif (14)
Styring, Stenbjörn (8)
Wiklund, Martin (7)
Hammarström, Lennart (6)
Åkermark, Björn (5)
Berglund, Helena (4)
visa fler...
Mezheyeuski, Artur (3)
Pontén, Fredrik (3)
Glimelius, Bengt (3)
Helleday, Thomas (3)
Högbom, Martin (3)
Karlsson, Martin (3)
Zhang, Q. (2)
Zhang, Y. (2)
Bryceson, YT (2)
Sundström, Villy (2)
Mentre, F (2)
Edqvist, Per-Henrik ... (2)
Casanova, JL (2)
Abolhassani, H (2)
Grishenkov, Dmitry, ... (2)
Zhang, P (2)
Hammarström, Leif, 1 ... (2)
Nilsson, Peter (2)
Bergman, P. (2)
Malmström, Per-Uno (2)
Novelli, G (2)
Ruiz, M (2)
Notarangelo, LD (2)
Boisson, B (2)
Keles, S (2)
Su, HC (2)
Abolhassani, Hassan (2)
Condino-Neto, A (2)
Bastard, P (2)
Zhang, SY (2)
Hammarström, L (2)
Pan-Hammarström, Q (2)
Wolpher, Henriette (2)
Johansson, Andreas (2)
Gregersen, PK (2)
Borgquist, Signe (2)
Lomoth, Reiner (2)
Olofsson, Linus (2)
Eriksson, Mikael (2)
Lifton, RP (2)
Eklund, Martin (2)
Tresoldi, C (2)
Loseva, Olga (2)
Jirström, Karin (2)
visa färre...
Lärosäte
Uppsala universitet (29)
Karolinska Institutet (23)
Kungliga Tekniska Högskolan (15)
Göteborgs universitet (9)
Stockholms universitet (9)
Linköpings universitet (9)
visa fler...
Örebro universitet (4)
Lunds universitet (4)
Umeå universitet (2)
Chalmers tekniska högskola (1)
Linnéuniversitetet (1)
RISE (1)
visa färre...
Språk
Engelska (60)
Odefinierat språk (6)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (21)
Naturvetenskap (20)
Teknik (6)
Humaniora (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy