SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hammerschmidt Reinhard) "

Sökning: WFRF:(Hammerschmidt Reinhard)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kohantorabi, Mona, et al. (författare)
  • Light-Induced Transformation of Virus-Like Particles on TiO2
  • 2024
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 16:28, s. 37275-37287
  • Tidskriftsartikel (refereegranskat)abstract
    • Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.
  •  
2.
  • von Tottleben, Malte, et al. (författare)
  • An Integrated Care Platform System (C3-Cloud) for Care Planning, Decision Support, and Empowerment of Patients With Multimorbidity: Protocol for a Technology Trial
  • 2022
  • Ingår i: JMIR Research Protocols. - : JMIR Publications. - 1929-0748. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is an increasing need to organize the care around the patient and not the disease, while considering the complex realities of multiple physical and psychosocial conditions, and polypharmacy. Integrated patient-centered care delivery platforms have been developed for both patients and clinicians. These platforms could provide a promising way to achieve a collaborative environment that improves the provision of integrated care for patients via enhanced information and communication technology solutions for semiautomated clinical decision support.Objective: The Collaborative Care and Cure Cloud project (C3-Cloud) has developed 2 collaborative computer platforms for patients and members of the multidisciplinary team (MDT) and deployed these in 3 different European settings. The objective of this study is to pilot test the platforms and evaluate their impact on patients with 2 or more chronic conditions (diabetes mellitus type 2, heart failure, kidney failure, depression), their informal caregivers, health care professionals, and, to some extent, health care systems.Methods: This paper describes the protocol for conducting an evaluation of user experience, acceptability, and usefulness of the platforms. For this, 2 “testing and evaluation” phases have been defined, involving multiple qualitative methods (focus groups and surveys) and advanced impact modeling (predictive modeling and cost-benefit analysis). Patients and health care professionals were identified and recruited from 3 partnering regions in Spain, Sweden, and the United Kingdom via electronic health record screening.Results: The technology trial in this 4-year funded project (2016-2020) concluded in April 2020. The pilot technology trial for evaluation phases 3 and 4 was launched in November 2019 and carried out until April 2020. Data collection for these phases is completed with promising results on platform acceptance and socioeconomic impact. We believe that the phased, iterative approach taken is useful as it involves relevant stakeholders at crucial stages in the platform development and allows for a sound user acceptance assessment of the final product.Conclusions: Patients with multiple chronic conditions often experience shortcomings in the care they receive. It is hoped that personalized care plan platforms for patients and collaboration platforms for members of MDTs can help tackle the specific challenges of clinical guideline reconciliation for patients with multimorbidity and improve the management of polypharmacy. The initial evaluative phases have indicated promising results of platform usability. Results of phases 3 and 4 were methodologically useful, yet limited due to the COVID-19 pandemic.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy