SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hammond Ester M) "

Sökning: WFRF:(Hammond Ester M)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Chan, Norman, et al. (författare)
  • Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment.
  • 2010
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 70:20, s. 8045-54
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute and chronic hypoxia exists within the three-dimensional microenvironment of solid tumors and drives therapy resistance, genetic instability, and metastasis. Replicating cells exposed to either severe acute hypoxia (16 hours with 0.02% O(2)) followed by reoxygenation or moderate chronic hypoxia (72 hours with 0.2% O(2)) treatments have decreased homologous recombination (HR) protein expression and function. As HR defects are synthetically lethal with poly(ADP-ribose) polymerase 1 (PARP1) inhibition, we evaluated the sensitivity of repair-defective hypoxic cells to PARP inhibition. Although PARP inhibition itself did not affect HR expression or function, we observed increased clonogenic killing in HR-deficient hypoxic cells following chemical inhibition of PARP1. This effect was partially reversible by RAD51 overexpression. PARP1(-/-) murine embryonic fibroblasts (MEF) showed a proliferative disadvantage under hypoxic gassing when compared with PARP1(+/+) MEFs. PARP-inhibited hypoxic cells accumulated γH2AX and 53BP1 foci as a consequence of altered DNA replication firing during S phase-specific cell killing. In support of this proposed mode of action, PARP inhibitor-treated xenografts displayed increased γH2AX and cleaved caspase-3 expression in RAD51-deficient hypoxic subregions in vivo, which was associated with decreased ex vivo clonogenic survival following experimental radiotherapy. This is the first report of selective cell killing of HR-defective hypoxic cells in vivo as a consequence of microenvironment-mediated "contextual synthetic lethality." As all solid tumors contain aggressive hypoxic cells, this may broaden the clinical utility of PARP and DNA repair inhibition, either alone or in combination with radiotherapy and chemotherapy, even in tumor cells lacking synthetically lethal, genetic mutations.
  •  
3.
  • Wilson, Joseph D., et al. (författare)
  • Ultra-High Dose Rate (FLASH) Radiotherapy : Silver Bullet or Fool's Gold?
  • 2020
  • Ingår i: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 9
  • Forskningsöversikt (refereegranskat)abstract
    • Radiotherapy is a cornerstone of both curative and palliative cancer care. However, radiotherapy is severely limited by radiation-induced toxicities. If these toxicities could be reduced, a greater dose of radiation could be given therefore facilitating a better tumor response. Initial pre-clinical studies have shown that irradiation at dose rates far exceeding those currently used in clinical contexts reduce radiation-induced toxicities whilst maintaining an equivalent tumor response. This is known as the FLASH effect. To date, a single patient has been subjected to FLASH radiotherapy for the treatment of subcutaneous T-cell lymphoma resulting in complete response and minimal toxicities. The mechanism responsible for reduced tissue toxicity following FLASH radiotherapy is yet to be elucidated, but the most prominent hypothesis so far proposed is that acute oxygen depletion occurs within the irradiated tissue. This review examines the tissue response to FLASH radiotherapy, critically evaluates the evidence supporting hypotheses surrounding the biological basis of the FLASH effect, and considers the potential for FLASH radiotherapy to be translated into clinical contexts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy