SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Handorf D.) "

Sökning: WFRF:(Handorf D.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wendisch, M., et al. (författare)
  • Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)(3) Project
  • 2023
  • Ingår i: Bulletin of the American Meteorological Society. - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 104:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)(3) project was established in 2016 (www.ac3-tr.de/). It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, shipborne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data. For example, a distinct atmospheric moistening, an increase of regional storm activities, an amplified winter warming in the Svalbard and North Pole regions, and a decrease of sea ice thickness in the Fram Strait and of snow depth on sea ice have been identified. A positive trend of tropospheric bromine monoxide (BrO) column densities during polar spring was verified. Local marine/biogenic sources for cloud condensation nuclei and ice nucleating particles were found. Atmospheric-ocean and radiative transfer models were advanced by applying new parameterizations of surface albedo, cloud droplet activation, convective plumes and related processes over leads, and turbulent transfer coefficients for stable surface layers. Four modes of the surface radiative energy budget were explored and reproduced by simulations. To advance the future synthesis of the results, cross-cutting activities are being developed aiming to answer key questions in four focus areas: lapse rate feedback, surface processes, Arctic mixed-phase clouds, and airmass transport and transformation.
  •  
2.
  • Cohen, J., et al. (författare)
  • Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather
  • 2020
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 10, s. 20-29
  • Forskningsöversikt (refereegranskat)abstract
    • The Arctic has warmed more than twice as fast as the global average since the late twentieth century, a phenomenon known as Arctic amplification (AA). Recently, there have been considerable advances in understanding the physical contributions to AA, and progress has been made in understanding the mechanisms that link it to midlatitude weather variability. Observational studies overwhelmingly support that AA is contributing to winter continental cooling. Although some model experiments support the observational evidence, most modelling results show little connection between AA and severe midlatitude weather or suggest the export of excess heating from the Arctic to lower latitudes. Divergent conclusions between model and observational studies, and even intramodel studies, continue to obfuscate a clear understanding of how AA is influencing midlatitude weather.
  •  
3.
  •  
4.
  • Rinke, A, et al. (författare)
  • Simulated Arctic atmospheric feedbacks associated with late summer sea ice anomalies
  • 2013
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-897X. ; 118:14, s. 7698-7714
  • Tidskriftsartikel (refereegranskat)abstract
    • The coupled regional climate model HIRHAM-NAOSIM is used to investigate feedbacks between September sea ice anomalies in the Arctic and atmospheric conditions in autumn and the subsequent winter. A six-member ensemble of simulations spanning the period 1949–2008 is analyzed. The results show that negative Arctic sea ice anomalies are associated with increased heat and moisture fluxes, decreased static stability, increased lower tropospheric moisture, and modified baroclinicity, synoptic activity, and atmospheric large-scale circulation. The circulation changes in the following winter display meridionalized flow but are not fully characteristic of a negative Arctic Oscillation pattern, though they do support cold winter temperatures in northern Eurasia. Internally generated climate variability causes significant uncertainty in the simulated circulation changes due to sea ice-atmosphere interactions. The simulated atmospheric feedback patterns depend strongly on the position and strength of the regional sea ice anomalies and on the analyzed time period. The strongest atmospheric feedbacks are related to sea ice anomalies in the Beaufort Sea. This work suggests that there are complex feedback mechanisms that support a statistical link between reduced September sea ice and Arctic winter circulation. However, the feedbacks depend on regional and decadal variations in the coupled atmosphere-ocean-sea ice system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy