SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hansson Emil M.) "

Sökning: WFRF:(Hansson Emil M.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Axelsson, Magnus A. B., et al. (författare)
  • Deglycosylation by gaseous hydrogen fluoride of mucus glycoproteins immobilized on nylon membranes and in microtiter wells.
  • 1998
  • Ingår i: Glycoconjugate journal. - 0282-0080. ; 15:8, s. 749-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Strongly reacting antibodies specific for defined mucin gene products are often directed against the mucin protein backbone of the heavily glycosylated serine/threonine rich regions. A prerequisite for the use of such antibodies is often the complete removal of the oligosaccharides from the protein. This paper describes an efficient one-step deglycosylation method using gaseous hydrogen fluoride on nylon blotting membranes and microtiter wells.
  •  
2.
  • Muhl, Lars, et al. (författare)
  • A single-cell transcriptomic inventory of murine smooth muscle cells
  • 2022
  • Ingår i: Developmental Cell. - : Elsevier. - 1534-5807 .- 1878-1551. ; 57:20, s. 2426-
  • Tidskriftsartikel (refereegranskat)abstract
    • Smooth muscle cells (SMCs) execute important physiological functions in numerous vital organ systems, including the vascular, gastrointestinal, respiratory, and urogenital tracts. SMC differ morphologically and functionally at these different anatomical locations, but the molecular underpinnings of the differences remain poorly understood. Here, using deep single-cell RNA sequencing combined with in situ gene and pro-tein expression analysis in four murine organs-heart, aorta, lung, and colon-we identify a molecular basis for high-level differences among vascular, visceral, and airway SMC, as well as more subtle differences between, for example, SMC in elastic and muscular arteries and zonation of elastic artery SMC along the direction of blood flow. Arterial SMC exhibit extensive organotypic heterogeneity, whereas venous SMC are similar across organs. We further identify a specific SMC subtype within the pulmonary vasculature. This comparative SMC cross-organ resource offers insight into SMC subtypes and their specific functions.
  •  
3.
  • Muhl, Lars, et al. (författare)
  • Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Many important cell types in adult vertebrates have a mesenchymal origin, including fibroblasts and vascular mural cells. Although their biological importance is undisputed, the level of mesenchymal cell heterogeneity within and between organs, while appreciated, has not been analyzed in detail. Here, we compare single-cell transcriptional profiles of fibroblasts and vascular mural cells across four murine muscular organs: heart, skeletal muscle, intestine and bladder. We reveal gene expression signatures that demarcate fibroblasts from mural cells and provide molecular signatures for cell subtype identification. We observe striking inter- and intra-organ heterogeneity amongst the fibroblasts, primarily reflecting differences in the expression of extracellular matrix components. Fibroblast subtypes localize to discrete anatomical positions offering novel predictions about physiological function(s) and regulatory signaling circuits. Our data shed new light on the diversity of poorly defined classes of cells and provide a foundation for improved understanding of their roles in physiological and pathological processes. To define and distinguish fibroblasts from vascular mural cells have remained challenging. Here, using single-cell RNA sequencing and tissue imaging, the authors provide a molecular basis for cell type classification and reveal inter- and intra-organ diversity of these cell types.
  •  
4.
  • Pietilä, Riikka, et al. (författare)
  • Molecular anatomy of adult mouse leptomeninges
  • 2023
  • Ingår i: Neuron. - : Elsevier. - 0896-6273 .- 1097-4199. ; 111:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptomeninges, consisting of the pia mater and arachnoid, form a connective tissue investment and barrier enclosure of the brain. The exact nature of leptomeningeal cells has long been debated. In this study, we iden-tify five molecularly distinct fibroblast-like transcriptomes in cerebral leptomeninges; link them to anatomically distinct cell types of the pia, inner arachnoid, outer arachnoid barrier, and dural border layer; and contrast them to a sixth fibroblast-like transcriptome present in the choroid plexus and median eminence. Newly identified transcriptional markers enabled molecular characterization of cell types responsible for adherence of arach-noid layers to one another and for the arachnoid barrier. These markers also proved useful in identifying the molecular features of leptomeningeal development, injury, and repair that were preserved or changed after traumatic brain injury. Together, the findings highlight the value of identifying fibroblast transcriptional subsets and their cellular locations toward advancing the understanding of leptomeningeal physiology and pathology.
  •  
5.
  • Abrahamsson, Johanna, 1990, et al. (författare)
  • A Raman spectroscopic approach to investigate the production of biodiesel from soybean oil using 1-alkyl-3-methylimidazolium ionic liquids with intermediate chain length
  • 2015
  • Ingår i: Applied Energy. - : Elsevier BV. - 1872-9118 .- 0306-2619. ; 154, s. 763-770
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a Raman spectroscopic study of the conversion of soybean oil into biodiesel by methanol using the lipase B enzyme pseudomonas cepacia as the bio-catalyst and 1-alkyl-3-methylimidazolium ionic liquids (CnC1Im) as co-solvents, where the alkyl chain length is varied from ethyl (n=2) to decyl (n=10). We have limited this study to a low reaction temperature, 40°C, and a low enzyme concentration to investigate the possibility of producing biodiesel with low energy and cost demands. We also demonstrate that Raman spectroscopy is a powerful and straightforward method to estimate the yield of the transesterification reaction, by analysis of the characteristic CO stretching mode found in the range ~1730-1750cm-1. Our results indicate that both reaction yield and reaction rate increase with the chain length, but also that for chains longer than decyl further improvements are marginal. We discuss these results from the viewpoint of local interactions and local structure of the investigated ionic liquids.
  •  
6.
  • Berron, David, et al. (författare)
  • Hippocampal subregional thinning related to tau pathology in early stages of Alzheimer’s disease
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Subregions in the medial temporal lobe (MTL) are affected early by Alzheimer’s disease (AD) pathology and subject to grey matter atrophy. Measuring the earliest AD-related atrophy in the hippocampus is challenging as region-of-interest (ROI) analyses of hippocampal subregional volumes collapse across voxels within anatomical subregions. PET imaging studies, however, report accumulation of tau pathology between anatomical subregions in the earliest disease stages (Berron et al., 2021) fitting reports from the neuropathological literature (Lace et al., 2019; Ravikumar et al., 2021). Thus, sensitive in vivo methods of point-wise structural measures are needed in order to detect the earliest hippocampal thinning in AD along the anterior-posterior as well as the medial-lateral hippocampal axis. Method: Here we analyzed data from 76 amyloid-beta negative (Ab-) cognitively normal (CN), 46 Ab+ CN individuals and 25 Ab+ patients with mild cognitive impairment (MCI) from the BioFINDER-2 study, who underwent 7 Tesla T2-weighted structural magnetic resonance imaging, tau positron emission tomography imaging (using 18F-RO-948) and cognitive assessments. First, we segmented hippocampal subfields and extrahippocampal subregions. Second, we calculated point-wise hippocampal thickness estimates (Diers et al.) of hippocampal subfields subiculum, cornu ammonis (CA)1, CA2 and CA3 on the level of the hippocampal body. Thirdly, we extracted local tau-PET SUVR from Area 35 (A35), entorhinal cortex and amygdala. Finally, we assessed relationships between hippocampal local thickness and tau accumulation as well as cognitive performance. Result: Our analyses revealed earliest hippocampal thinning associated with tau accumulation in an area spanning the boundary of subiculum and CA1 at the level of the anterior hippocampal body. Ab+ MCI patients showed more posterior thinning in comparison to Ab- CU participants. Median thickness in an ROI comprising vertices with A35 tau-related thinning (A35-TauThinning-ROI) was significantly lower in MCI Ab+ and tended to be lower in CU Ab+ compared to CU Ab-. Higher median thickness in the hippocampal A35-TauThinning-ROI, but not whole CA1 nor subiculum thickness, was associated with better 10-Word-Delayed-Recall and higher PACC scores. Conclusion: Our results suggest that tau-related thinning of hippocampal subregions can be observed already in early disease stages. Tau-related point-wise thickness measures were more sensitive compared to volumetric measures of anatomical subregions.
  •  
7.
  • Del Gaudio, Francesca, et al. (författare)
  • Left ventricular hypertrophy and metabolic resetting in the Notch3-deficient adult mouse heart
  • 2023
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The heart depends on a functional vasculature for oxygenation and transport of nutrients, and it is of interest to learn how primary impairment of the vasculature can indirectly affect cardiac function and heart morphology. Notch3-deficiency causes vascular smooth muscle cell (VSMC) loss in the vasculature but the consequences for the heart remain largely elusive. Here, we demonstrate that Notch3(-/-) mice have enlarged hearts with left ventricular hypertrophy and mild fibrosis. Cardiomyocytes were hypertrophic but not hyperproliferative, and the expression of several cardiomyocyte markers, including Tnt2, Myh6, Myh7 and Actn2, was altered. Furthermore, expression of genes regulating the metabolic status of the heart was affected: both Pdk4 and Cd36 were downregulated, indicating a metabolic switch from fatty acid oxidation to glucose consumption. Notch3(-/-) mice furthermore showed lower liver lipid content. Notch3 was expressed in heart VSMC and pericytes but not in cardiomyocytes, suggesting that a perturbation of Notch signalling in VSMC and pericytes indirectly impairs the cardiomyocytes. In keeping with this, Pdgfb(ret/ret) mice, characterized by reduced numbers of VSMC and pericytes, showed left ventricular and cardiomyocyte hypertrophy. In conclusion, we demonstrate that reduced Notch3 or PDGFB signalling in vascular mural cells leads to cardiomyocyte dysfunction.
  •  
8.
  • Jin, Shaobo, et al. (författare)
  • Notch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells
  • 2008
  • Ingår i: Circulation Research. - 0009-7330 .- 1524-4571. ; 102:12, s. 1483-1491
  • Tidskriftsartikel (refereegranskat)abstract
    • Notch signaling is critically important for proper architecture of the vascular system, and mutations in NOTCH3 are associated with CADASIL, a stroke and dementia syndrome with vascular smooth muscle cell (VSMC) dysfunction. In this report, we link Notch signaling to platelet-derived growth factor (PDGF) signaling, a key determinant of VSMC biology, and show that PDGF receptor (PDGFR)-beta is a novel immediate Notch target gene. PDGFR-beta expression was upregulated by Notch ligand induction or by activated forms of the Notch receptor. Moreover, upregulation of PDGFR-beta expression in response to Notch activation critically required the Notch signal integrator CSL. In primary VSMCs, PDGFR-beta expression was robustly upregulated by Notch signaling, leading to an augmented intracellular response to PDGF stimulation. In newborn Notch3-deficient mice, PDGFR-beta expression was strongly reduced in the VSMCs that later develop an aberrant morphology. In keeping with this, PDGFR-beta upregulation in response to Notch activation was reduced also in Notch3-deficient embryonic stem cells. Finally, in VSMCs from a CADASIL patient carrying a NOTCH3 missense mutation, upregulation of PDGFR-beta mRNA and protein in response to ligand-induced Notch activation was significantly reduced. In sum, these data reveal a hierarchy for 2 important signaling systems, Notch and PDGF, in the vasculature and provide insights into how dysregulated Notch signaling perturbs VSMC differentiation and function.
  •  
9.
  • Lanner, Fredrik, et al. (författare)
  • Hypoxia-Induced Arterial Differentiation Requires Adrenomedullin and Notch Signaling
  • 2013
  • Ingår i: Stem Cells and Development. - : Mary Ann Liebert Inc. - 1547-3287 .- 1557-8534. ; 22:9, s. 1360-1369
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxia (low oxygen) and Notch signaling are 2 important regulators of vascular development, but how they interact in controlling the choice between arterial and venous fates for endothelial cells during vasculogenesis is less well understood. In this report, we show that hypoxia and Notch signaling intersect in promotion of arterial differentiation. Hypoxia upregulated expression of the Notch ligand Dll4 and increased Notch signaling in a process requiring the vasoactive hormone adrenomedullin. Notch signaling also upregulated Dll4 expression, leading to a positive feedback loop sustaining Dll4 expression and Notch signaling. In addition, hypoxia-mediated upregulation of the arterial marker genes Depp, connexin40 (Gja5), Cxcr4, and Hey1 required Notch signaling. In conclusion, the data reveal an intricate interaction between hypoxia and Notch signaling in the control of endothelial cell differentiation, including a hypoxia/adrenomedullin/Dll4 axis that initiates Notch signaling and a requirement for Notch signaling to effectuate hypoxia-mediated induction of the arterial differentiation program.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (13)
Typ av innehåll
refereegranskat (13)
Författare/redaktör
Lendahl, Urban (9)
Betsholtz, Christer (5)
Vanlandewijck, Micha ... (4)
Muhl, Lars (4)
He, Liqun (4)
Liu, Jianping (4)
visa fler...
Andaloussi Mäe, Maar ... (3)
Kalimo, Hannu (2)
Mäkinen, Taija (2)
Hansson, Oskar (2)
Jin, Shaobo (2)
Svenningsson, P (1)
Claesson-Welsh, Lena (1)
Martinelli, Anna, 19 ... (1)
Abrahamsson, Johanna ... (1)
Andreasson, Emil, 19 ... (1)
Hansson, Niklas, 197 ... (1)
Sandström, David, 19 ... (1)
Wennberg, Ellinor, 1 ... (1)
Maréchal, M. (1)
Berron, David (1)
Nilsson, Per (1)
Wirdefeldt, K (1)
Winblad, Bengt (1)
Viitanen, Matti (1)
Belin, AC (1)
Zettergren, Anna, 19 ... (1)
Ernfors, Patrik (1)
Stomrud, Erik (1)
Sydow, O. (1)
Svensson, Mikael (1)
Kristensen, Jonas (1)
Forsgren, Lars (1)
Linder, Jan (1)
Lindblad, Caroline (1)
von Heijne, Gunnar (1)
Puschmann, Andreas (1)
Vázquez-Liébanas, El ... (1)
Smith, Ruben (1)
Strandberg, Olof (1)
Hansson, Gunnar C., ... (1)
Zhang, Lei (1)
Sikut, Rein (1)
Andersson, Felix (1)
Brodin, L (1)
Mohammed, Abdul (1)
Andrae, Johanna (1)
Axelsson, Magnus A. ... (1)
Odin, Per (1)
Widner, Håkan (1)
visa färre...
Lärosäte
Karolinska Institutet (10)
Uppsala universitet (8)
Göteborgs universitet (2)
Lunds universitet (2)
Umeå universitet (1)
Stockholms universitet (1)
visa fler...
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (9)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy