SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hansson Sophia V.) "

Sökning: WFRF:(Hansson Sophia V.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hansson, Sophia V., et al. (författare)
  • Beryllium-7 as a natural tracer for short-term downwash in peat
  • 2014
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 119:1-3, s. 329-339
  • Tidskriftsartikel (refereegranskat)abstract
    • Several factors can affect the integrity of natural archives such as peat records, e.g., decomposition and nutrient cycling, and it has also been hypothesized that some rapid downward transport of atmospherically derived elements may occur. We test this hypothesis by analyzing the short-lived, natural tracer beryllium-7 (tA1/2A = 53.4 days) in five cores from two peatlands. In triplicate hummock cores from a raised bog in southern Sweden, Be-7 could be measured to 20, 18 and 8 cm depth, and in a nutrient-poor mire in northern Sweden to a depth of 16 cm in a Sphagnum lawn core, but only 4 cm in the dominant, more-decomposed fen peat, indicating some spatial variability both within and between sites. Total Be-7 inventories were 320-450 Bq m(-2) in the bog, and 150 Bq m(-2) (lawn) and 240 Bq m(-2) (fen peat) in the mire. 25-79 % of the total inventory of Be-7 was located in the upper 2-cm layer. To further test downwashing, in the laboratory we applied a CuBr-solution to two cores and a Cu-solution to one core taken from the mire Sphagnum lawn, all with low water table conditions. About 50 % of the added Cu and similar to 35 % of the added Br were retained in the surface (2 cm) layer; 1-3 % of the Cu was found at 8-12 cm depth and similar to 1 % of the Br was measured in the lowest level (20-22 cm). Based on our novel approach using Be-7 and experimental work we show that short-term downwashing can occur in peatlands and we suggest the depth of this will depend on the properties of the peat, e.g., bulk density and decomposition, as well as hydrology.
  •  
2.
  • Hansson, Sophia V., et al. (författare)
  • Evaluating paleoproxies for peat decomposition and their relationship to peat geochemistry
  • 2013
  • Ingår i: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 23:12, s. 1666-1671
  • Tidskriftsartikel (refereegranskat)abstract
    • The past decade has seen a rapid increase in interest in the biogeochemical record preserved in peat, particularly as it relates to carbon dynamics and environmental change. Importantly, recent studies show that carbon dynamics, that is, organic matter decomposition, can influence the record of atmospherically derived elements such as halogens and mercury. Most commonly, bulk density, light transmission, or carbon/nitrogen (C/N) ratios are used as a proxy to qualitatively infer the degree of decomposition in peat, but do these three proxies reflect the same patterns? Furthermore, how do each of these proxies relate to other geochemical data? To address these questions, we analyzed bulk density, light transmission, and C/N ratios, as well as multielement geochemistry (wavelength-dispersive x-ray fluorescence (WD-XRF)), in three hummock cores (70 cm in length, c. 500 years) from an ombrotrophic Swedish bog. To compare the proxies, we applied principal component analysis (PCA) to identify how the proxies relate to and interact with the geochemical matrix. This was coupled with changepoint modeling to identify and compare statistically significant changes for each proxy. Our results show differences between the proxies within and between cores, indicating each responds to a different part of the decomposition process. This is supported by the PCA, where the three proxies fall on different principal components. Changepoint analysis also showed that the inferred number of changepoints and their depths vary for each proxy and core. This suggests that decomposition is not fully captured by any one of these commonly used proxies, and thus, more than one proxy should be included.
  •  
3.
  • Hansson, Sophia V., 1981- (författare)
  • Incorporation and preservation of geochemical fingerprints in peat archives
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The present status of the environment, including environmental problems such as heavy metal accumulation in aquatic and terrestrial ecosystems, is in part the consequence of long-term changes. Cores from peatlands and other natural archives provide us with the potential to study aspects of the atmospheric cycling of elements, such as metal pollutants, on timescales much longer than the decade or two available to us with atmospheric deposition monitoring programs. The past decade especially has seen a rapid increase in interest in the biogeochemical record preserved in peat, particularly as it relates to environmental changes (e.g. climate and pollution). Importantly, recent studies have shown that carbon dynamics, i.e., organic matter decomposition, may influence the record of atmospherically derived elements such as halogens and mercury. Other studies have shown that under certain conditions some downward movement of atmospherically deposited elements may also occur, which adds complexity to establishing reliable chronologies as well as inherent problems of estimating accurate accumulation rates of peat and past metal deposition. Thus, we still lack a complete understanding of the basic biogeochemical processes and their effects on trace element distributions. While many studies have validated the general temporal patterns of peat records, there has been a limited critical examination of accumulation records in quantitative terms. To be certain that we extract not only a qualitative record from peat, it is important that we establish a quantitative link between the archive and the few to several decades of data that are available from contemporary monitoring and research. The main objective of this doctoral thesis was to focus on improving the link between the long-term paleorecord and the contemporary monitoring data available from biomonitoring and direct deposition observations. The main research questions have therefore been: Are peat archives an absolute or relative record? And how are geochemical signals, including dating, incorporated in the peat archive? What temporal resolution is realistic to interpret by using peat cores?
  •  
4.
  • Hansson, Sophia V., et al. (författare)
  • Incorporation of radiometric tracers in peat and implications for estimating accumulation rates
  • 2014
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 493, s. 170-177
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate dating of peat accumulation is essential for quantitatively reconstructing past changes in atmospheric metal deposition and carbon burial. By analyzing fallout radionuclides Pb-210, Cs-137, Am-241, and Be-7, and total Pb and Hg in 5 cores from two Swedish peatlands we addressed the consequence of estimating accumulation rates due to downwashing of atmospherically supplied elements within peat. The detection of Be-7 down to 18-20 cm for some cores, and the broad vertical distribution of Am-241 without a well-defined peak, suggest some downward transport by percolating rainwater and smearing of atmospherically deposited elements in the uppermost peat layers. Application of the CRS age-depth model leads to unrealistic peat mass accumulation rates (400-600 g m(-2) yr(-1)), and inaccurate estimates of past Pb and Hg deposition rates and trends, based on comparisons to deposition monitoring data (forest moss biomonitoring and wet deposition). After applying a newly proposed IP-CRS model that assumes a potential downward transport of Pb-210 through the uppermost peat layers, recent peat accumulation rates (200-300 g m(-2) yr(-1)) comparable to published values were obtained. Furthermore, the rates and temporal trends in Pb and Hg accumulation correspond more closely to monitoring data, although some off-set is still evident. We suggest that downwashing can be successfully traced using Be-7, and if this information is incorporated into age-depth models, better calibration of peat records with monitoring data and better quantitative estimates of peat accumulation and past deposition are possible, although more work is needed to characterize how downwashing may vary between seasons or years.
  •  
5.
  • Kylander, Malin E., et al. (författare)
  • Mineral dust as a driver of carbon accumulation in northern latitudes
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands in northern latitudes sequester one third of the world's soil organic carbon. Mineral dusts can affect the primary productivity of terrestrial systems through nutrient transport but this process has not yet been documented in these peat-rich regions. Here we analysed organic and inorganic fractions of an 8900-year-old sequence from Store Mosse (the "Great Bog") in southern Sweden. Between 5420 and 4550 cal yr BP, we observe a seven-fold increase in net peat-accumulation rates corresponding to a maximum carbon-burial rate of 150 g C m(-2) yr(-1) -more than six times the global average. This high peat accumulation event occurs in parallel with a distinct change in the character of the dust deposited on the bog, which moves from being dominated by clay minerals to less weathered, phosphate and feldspar minerals. We hypothesize that this shift boosted nutrient input to the bog and stimulated ecosystem productivity. This study shows that diffuse sources and dust dynamics in northern temperate latitudes, often overlooked by the dust community in favour of arid and semi-arid regions, can be important drivers of peatland carbon accumulation and by extension, global climate, warranting further consideration in predictions of future climate variability.
  •  
6.
  • Sjöström, Jenny K., et al. (författare)
  • Paleodust deposition and peat accumulation rates : bog size matters
  • 2020
  • Ingår i: Chemical Geology. - : Elsevier. - 0009-2541 .- 1872-6836. ; 554
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a high-resolution peat paleodust and accumulation rate record spanning the last 8300 years from Draftinge Mosse (400 ha), southern Sweden (57 degrees 06'27.6 '' N 13 degrees 42'54.1 '' E). The record was analysed for peat accumulation rates (PAR), elemental concentrations, mineralogy, and plant macrofossil content. Five periods of increased mineral deposition were recorded. The first event occurred between similar to 6280 and similar to 5570 cal BP, during the fen to bog transition. This is followed by four atmospheric mineral dust events (DE) which were recorded in the ombrotrophic section of the sequence at (cal BP): similar to 2200; similar to 1385-1150; similar to 830-590, and from similar to 420 to the present. Statistical analysis and elemental ratios indicated that both the mineralogy and grain size shifted when the system transitioned from fen into bog, showing that the governing transport process shifted with the peat-land succession stages. This highlights the importance of identifying peatland succession stages within peat paleodust studies. Following all four DE, increases in PAR were observed, implying a coupling to dust deposition. Comparison of DE and PAR with a paleodust record from Store Mosse, a 20 times larger bog located ca 18 km away (Kylander et al. 2016), showed that both PAR and dust deposition are largely represented by single-core reconstructions, indicating that they are driven by a common climate forcing mechanism. However, higher PAR and dust deposition rates were observed in the more moderately sized Draftinge Mosse, suggesting that the size of the bog is important to consider in peat paleodust studies. Furthermore, the smaller bog responded more rapidly to hydrological changes, indicating that the size of the bog affects its' buffering capacity. Authigenic carbonates, observed here during episodes of rapid peat growth, coincide with changes in REE ratios, indicating that authigenic peat processes potentially cause REE fractionation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy