SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hao Fanghua) "

Sökning: WFRF:(Hao Fanghua)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Shouzhi, et al. (författare)
  • Influences of Shifted Vegetation Phenology on Runoff Across a Hydroclimatic Gradient
  • 2022
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming has changed vegetation phenology, and the phenology-associated impacts on terrestrial water fluxes remain largely unquantified. The impacts are linked to plant adjustments and responses to climate change and can be different in different hydroclimatic regions. Based on remote sensing data and observed river runoff of hydrological station from six river basins across a hydroclimatic gradient from northeast to southwest in China, the relative contributions of the vegetation (including spring and autumn phenology, growing season length (GSL), and gross primary productivity) and climatic factors affecting the river runoffs over 1982–2015 were investigated by applying gray relational analysis (GRA). We found that the average GSLs in humid regions (190–241 days) were longer than that in semi-humid regions (186–192 days), and the average GSLs were consistently extended by 4.8–13.9 days in 1982–2015 period in six river basins. The extensions were mainly linked to the delayed autumn phenology in the humid regions and to advanced spring phenology in the semi-humid regions. Across all river basins, the GRA results showed that precipitation (r = 0.74) and soil moisture (r = 0.73) determine the river runoffs, and the vegetation factors (VFs) especially the vegetation phenology also affected the river runoffs (spring phenology: r = 0.66; GSL: r = 0.61; autumn phenology: r = 0.59), even larger than the contribution from temperature (r = 0.57), but its relative importance is climatic region-dependent. Interestingly, the spring phenology is the main VF in the humid region for runoffs reduction, while both spring and autumn growth phenology are the main VFs in the semi-humid region, because large autumn phenology delay and less water supply capacity in spring amplify the effect of advanced spring phenology. This article reveals diverse linkages between climatic and VFs, and runoff in different hydroclimatic regions, and provides insights that vegetation phenology influences the ecohydrology process largely depending on the local hydroclimatic conditions, which improve our understanding of terrestrial hydrological responses to climate change.
  •  
2.
  • Chen, Shouzhi, et al. (författare)
  • Informing the SWAT model with remote sensing detected vegetation phenology for improved modeling of ecohydrological processes
  • 2023
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694. ; 616
  • Tidskriftsartikel (refereegranskat)abstract
    • The Soil and Water Assessment Tool (SWAT) model has been widely applied for simulating the water cycle and quantifying the influence of climate change and anthropogenic activities on hydrological processes. A major uncertainty of SWAT stems from the poor representation of vegetation dynamics due to the use of a simplistic vegetation growth and development module. Using long-term remote sensing-based phenological data, the SWAT model's vegetation module was improved by adding a dynamic growth start date and the dynamic heat requirement for vegetation growth rather than using constant values. The new SWAT model was verified in the Han River basin, China, and found its performance was much improved in comparison with that of the original SWAT model. Specifically, the accuracy of the leaf area index (LAI) simulation improved notably (coefficient of determination (R2) increased by 0.193, Nash–Sutcliffe Efficiency (NSE) increased by 0.846, and percent bias decreased by 42.18 %), and that of runoff simulation improved modestly (R2 increased by 0.05 and NSE was similar). Additionally, it is found that the original SWAT model substantially underestimated evapotranspiration (Penman-Monteith method) in comparison with the new SWAT model (65.09 mm (or 22.17 %) for forests, 92.27 mm (or 32 %) for orchards, and 96.16 mm (or 36.4 %) for farmland), primarily due to the inaccurate representation of LAI dynamics. Our results suggest that an accurate representation of phenological dates in the vegetation growth module is important for improving the SWAT model performance in terms of estimating terrestrial water and energy balance.
  •  
3.
  • Fu, Yongshuo H., et al. (författare)
  • Global warming is increasing the discrepancy between green (actual) and thermal (potential) seasons of temperate trees
  • 2023
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 29:5, s. 1377-1389
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past decades, global warming has led to a lengthening of the time window during which temperatures remain favorable for carbon assimilation and tree growth, resulting in a lengthening of the green season. The extent to which forest green seasons have tracked the lengthening of this favorable period under climate warming, however, has not been quantified to date. Here, we used remote sensing data and long-term ground observations of leaf-out and coloration for six dominant species of European trees at 1773 sites, for a total of 6060 species–site combinations, during 1980–2016 and found that actual green season extensions (GS: 3.1 ± 0.1 day decade−1) lag four times behind extensions of the potential thermal season (TS: 12.6 ± 0.1 day decade−1). Similar but less pronounced differences were obtained using satellite-derived vegetation phenology observations, that is, a lengthening of 4.4 ± 0.13 and 7.5 ± 0.13 day decade−1 for GS and TS, respectively. This difference was mainly driven by the larger advance in the onset of the thermal season compared to the actual advance of leaf-out dates (spring mismatch: 7.2 ± 0.1 day decade−1), but to a less extent caused by a phenological mismatch between GS and TS in autumn (2.4 ± 0.1 day decade−1). Our results showed that forest trees do not linearly track the new thermal window extension, indicating more complex interactions between winter and spring temperatures and photoperiod and a justification of demonstrating that using more sophisticated models that include the influence of chilling and photoperiod is needed to accurately predict spring phenological changes under warmer climate. They urge caution if such mechanisms are omitted to predict, for example, how vegetative health and growth, species distribution and crop yields will change in the future.
  •  
4.
  • Liu, Lianhua, et al. (författare)
  • Heavy metal accumulation, geochemical fractions, and loadings in two agricultural watersheds with distinct climate conditions
  • 2020
  • Ingår i: Journal of Hazardous Materials. - : Elsevier. - 0304-3894 .- 1873-3336. ; 389
  • Tidskriftsartikel (refereegranskat)abstract
    • The main aim of this study was to explore the effects of climate conditions on the transport and transformation of heavy metals. Sedimentary geochemical analysis and watershed modeling were used to investigate the distinctions between heavy metal pollution under different climate conditions. The results showed that the average concentrations of Cu, Cd, and Pb in sediments of the subtropical watershed (36.64, 0.60, and 133.69 mg/kg, respectively) were higher than those of the temperate watershed (26.58, 0.19, and 23.17 mg/kg, respectively) because of surface runoff-induced heavy metal loadings under higher precipitation. Also, the labile fractions, which mainly originated from anthropogenic sources, showed higher percentages in the subtropical watershed (67.84-91.33%), thereby indicating that the transport of heavy metals was promoted by surface runoff. Moreover, higher percentages of acid-soluble fractions of Cu and Pb (23.55-33.60%) in the subtropical watershed suggested that higher temperatures accelerated the transformation of heavy metal fractions, thus contributing to the transportation of heavy metals. Overall, climate conditions were the dominant factors for the differences between the subtropical and temperate watersheds. The results of this study suggest that the effects of climate conditions on the transport, enrichment, and bioavailability of heavy metals are of great significance. Such effects should therefore be the focus of future studies.
  •  
5.
  • Ouyang, Wei, et al. (författare)
  • Watershed soil Cd loss after long-term agricultural practice and biochar amendment under four rainfall levels
  • 2017
  • Ingår i: Water Research. - : Elsevier. - 0043-1354 .- 1879-2448. ; 122, s. 692-700
  • Tidskriftsartikel (refereegranskat)abstract
    • Some heavy metals in farmland soil can be transported into the waterbody, affecting the water quality and sediment at the watershed outlet, which can be used to determine the historical loss pattern. Cd is a typical heavy metal leached from farmland that is related to phosphate fertilizers and carries serious environmental risk. The spatial-vertical pattern of Cd in soil and the vertical trend of Cd in the river sediment core were analyzed, which showed the migration and accumulation of Cd in the watershed. To prevent watershed Cd loss, biochar was employed, and leaching experiments were conducted to investigate the Cd loss from soil depending on the initial concentration. Four rainfall intensities, 1.25 mm/h, 2.50 mm/h, 5.00 mm/h, and 10.00 mm/h, were used to simulate typical rainfall scenarios for the study area. Biochar was prepared from corn straw after pretreatment with ammonium dihydrogen phosphate (ADP) and pyrolysis at 400 °C under anoxic conditions. To identify the effects of biochar amendment on Cd migration, the biochar was mixed with soil for 90 days at concentrations of 0%, 0.5%, 1.0%, 3.0%, and 5.0% soil by weight. The results showed that the Cd leaching load increased as the initial load and rainfall intensity increased and that eluviation caused surface Cd to diffuse to the deep soils. The biochar application caused more of the heavy metals to be immobilized in the amended soil rather than transported into the waterbody. The sorption efficiency of the biochar for Cd increased as the addition level increased to 3%, which showed better performance than the 5% addition level under some initial concentration and rainfall conditions. The research indicated that biochar is a potential material to prevent diffuse heavy metal pollution and that a lower addition makes the application more feasible.
  •  
6.
  • Chen, Shouzhi, et al. (författare)
  • Vegetation phenology and its ecohydrological implications from individual to global scales
  • 2022
  • Ingår i: Geography and Sustainability. - : Elsevier BV. - 2096-7438 .- 2666-6839. ; 3:4, s. 334-338
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth is experiencing unprecedented climate change. Vegetation phenology has already showed strong response to the global warming, which alters mass and energy fluxes on terrestrial ecosystems. With technology and method developments in remote sensing, computer science and citizen science, many recent phenology-related studies have been focused on macrophenology. In this perspective, we 1) reviewed the responses of vegetation phenology to climate change and its impacts on carbon cycling, and reported that the effect of shifted phenology on the terrestrial carbon fluxes is substantially different between spring and autumn; 2) elaborated how vegetation phenology affects ecohydrological processes at different scales, and further listed the key issues for each scale, i.e., focusing on seasonal effect, local feedbacks and regional vapor transport for individual, watershed and global respectively); 3) envisioned the potentials to improve current hydrological models by coupling vegetation phenology-related processes, in combining with machine learning, deep learning and scale transformation methods. We propose that comprehensive understanding of climate-macrophenology-hydrology interactions are essential and urgently needed for enhancing our understanding of the ecosystem response and its role in hydrological cycle under future climate change.
  •  
7.
  • Geng, Xiaojun, et al. (författare)
  • Contrasting phenology responses to climate warming across the northern extra-tropics
  • 2022
  • Ingår i: Fundamental Research. - : Elsevier BV. - 2667-3258. ; 2:5, s. 708-715
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming has substantially advanced the timing of spring leaf-out of woody species at middle and high latitudes, albeit with large differences. Insights in the spatial variation of this climate warming response may therefore help to constrain future trends in leaf-out and its impact on energy, water and carbon balances at global scales. In this study, we used in situ phenology observations of 38 species from 2067 study sites, distributed across the northern hemisphere in China, Europe and the United States, to investigate the latitudinal patterns of spring leaf-out and its sensitivity (ST, advance of leaf-out dates per degree of warming) and correlation (RT, partial correlation coefficient) to temperature during the period 1980–2016. Across all species and sites, we found that ST decreased significantly by 0.15 ± 0.02 d °C−1 °N−1, and RT increased by 0.02 ± 0.001 °N−1 (both at P < 0.001). The latitudinal patterns in RT and ST were explained by the differences in requirements of chilling and thermal forcing that evolved to maximize tree fitness under local climate, particularly climate predictability and summed precipitation during the pre-leaf-out season. Our results thus showed complicated spatial differences in leaf-out responses to ongoing climate warming and indicated that spatial differences in the interactions among environmental cues need to be embedded into large-scale phenology models to improve the simulation accuracy.
  •  
8.
  • Li, Xinxi, et al. (författare)
  • Increasing importance of precipitation in spring phenology with decreasing latitudes in subtropical forest area in China
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923. ; 304-305
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming has significantly advanced plant spring phenology in temperate and boreal biomes in the northern hemisphere. However, the response of subtropical forest phenology to climate change remains largely unclear. This study aimed to determine the spatiotemporal patterns of spring photosynthetic phenology in subtropical forests in China over the period 2002-2017 and explore its underlying mechanism in response to the changes of different climate variables. We applied four methods to extract the start of the photosynthetic period (SOP) from a solar–induced chlorophyll fluorescence (SIF) data set during the period 2002 to 2017, and determined correlations between SOP and environmental factors using partial correlation analyses. Overall, the SOP was advanced by 6.8 days. Furthermore, we found that the SIF-based SOP is highly correlated with the flux data–based photosynthetic onset dates, demonstrating that SIF can be a useful index in characterizing the photosynthetic phenology in subtropical forests. Interestingly, based on partial correlation analysation temperature dominated the SOP in the northern subtropical forest, but the importance of precipitation increased with decreasing latitudes, and the primary climatic control of SOP in southern monsoon evergreen forests is precipitation. These results suggested that the predicted increase in temperature and shift in precipitation regimes under ongoing climate change might potentially largely affect the photosynthetic phenology, and thus affect the carbon and water cycles in subtropical forests.
  •  
9.
  • Ouyang, Wei, et al. (författare)
  • Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed
  • 2017
  • Ingår i: Water Research. - : Elsevier. - 0043-1354 .- 1879-2448. ; 122, s. 377-386
  • Tidskriftsartikel (refereegranskat)abstract
    • Pesticide loadings to watersheds increase during agricultural development and may vary in accordance with different crop types and seasons. High pesticide loadings can potentially result in polluted stream water. The objective of this study was to determine the pesticide loadings and concentrations of three typical pesticides (atrazine, oxadiazon, and isoprothiolane) in river water from a middle high latitude agricultural watershed in northern China. During this study, we evaluated the watershed pesticide loss patterns for two crop types over three decades. For this purpose, we integrated data from field investigations, laboratory experiments, and modeling simulations involving a distributed hydrological solute transport model (Soil and Water Assessment Tool, SWAT). SWAT was employed to compare the temporal spatial fate and behaviors of atrazine, oxadiazon, and isoprothiolane from 1990 to 2014 in a watershed area amounting to 141.5 km(2). The results showed that the three pesticides could be detected at different locations throughout the watershed, and isoprothiolane was detected at the maximum value of 1.082 mu g/L in surface runoff of paddy land. The temporal trend for the yearly loading of atrazine decreased slightly over time, but the trends for oxadiazon and isoprothiolane increased markedly over an 18-year analysis period. In regard to the pesticide concentrations in water, atrazine was associated with the largest value of nearly 1.4 mu g/L. July and August were the found to be prime periods for pesticide loss from paddy land, and the biggest monthly loss of atrazine from dryland appeared in June. Under similar usage conditions, isoprothiolane loading from paddy fields ranked as the largest one among the three types of pesticides and reached up to 17 g/ha. Limited monitoring data were useful for validating the model, which yielded valuable temporal-spatial data on the fate of pesticides in this watershed. With the expansion of paddy rice cultivation, risks for pesticide contamination of water bodies will increase. The results of this study should be valuable for future exposure and risk assessments aimed at protecting the environment and human health.
  •  
10.
  • Ouyang, Wei, et al. (författare)
  • Typical agricultural diffuse herbicide sorption with agricultural waste-derived biochars amended soil of high organic matter content
  • 2016
  • Ingår i: Water Research. - : Elsevier. - 0043-1354 .- 1879-2448. ; 92, s. 156-163
  • Tidskriftsartikel (refereegranskat)abstract
    • Biochar application has been identified as the effective soil amendment and the materials to control the diffuse herbicide pollution. The atrazine was selected as the typical diffuse herbicide pollutant as the dominant proportion in applications. The biochar treated from four types of crops biomass were added to soil with high organic matter content. The basic sorption characteristics of biocahrs from corn cob (CC), corn stalk (CS), soybean straw (SS), rice straw (RS) and corn stalk paralyzed with 5% of ammonium dihydrogen phosphate (ACS) were analyzed, along with the comparison of the sorption difference of the raw soil and soil amended with biochars at four levels of ratio (0.5%, 1.0%, 3.0% and 5.0%). It was found that the linear distribution isotherm of raw soil was much effective due to the high organic matter background concentration. The addition of five types of biochars under two kinds of initial atrazine concentration (1 mg/L and 20 mg/L) demonstrated the sorption variances. Results showed the soil amended with RS and CS biochar had the biggest removal rate in four regular biochars and the removal rate of the ACS was the biggest. The sorption coefficient and the normalized sorption coefficient from Freundlich modeling presented the isothermal sorption characteristics of atrazine with soil of high organic matter content. The normalized sorption coefficient increased with the equilibrium concentration decreased in the biochar amended soil, which indicated the sorption performance will be better due to the low atrazine concentration in practice. Results showed that biochar amendment is the effective way to prevent leakage of diffuse herbicide loss.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy