SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Haraldsen J. T.) "

Sökning: WFRF:(Haraldsen J. T.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Shirer, K. R., et al. (författare)
  • Nuclear magnetic resonance studies of pseudospin fluctuations in URu2Si2
  • 2013
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 88:9, s. 094436-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report Si-29 nuclear magnetic resonance measurements in single crystals and aligned powders of URu2Si2 in the hidden order and paramagnetic phases. The spin-lattice relaxation data reveal evidence of pseudospin fluctuations of U moments in the paramagnetic phase. We find evidence for partial suppression of the density of states below 30 K and analyze the data in terms of a two-component spin-fermion model. We propose that this behavior is a realization of a pseudogap between the hidden-order transition T-HO and 30 K. This behavior is then compared to other materials that demonstrate precursor fluctuations in a pseudogap regime above a ground state with long-range order.
  •  
2.
  • Gao, S., et al. (författare)
  • Manifolds of magnetic ordered states and excitations in the almost Heisenberg pyrochlore antiferromagnet MgCr2 O4
  • 2018
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 97:13
  • Tidskriftsartikel (refereegranskat)abstract
    • In spinels ACr2O4(A=Mg, Zn), realization of the classical pyrochlore Heisenberg antiferromagnet model is complicated by a strong spin-lattice coupling: the extensive degeneracy of the ground state is lifted by a magneto-structural transition at TN=12.5 K. We study the resulting low-temperature low-symmetry crystal structure by synchrotron x-ray diffraction. The consistent features of x-ray low-temperature patterns are explained by the tetragonal model of Ehrenberg et al. [Pow. Diff. 17, 230 (2002)PODIE20885-715610.1154/1.1479738], while other features depend on sample or cooling protocol. A complex, partially ordered magnetic state is studied by neutron diffraction and spherical neutron polarimetry. Multiple magnetic domains of configuration arms of the propagation vectors k1=(12120),k2=(1012) appear. The ordered moment reaches 1.94(3) μB/Cr3+ for k1 and 2.08(3) μB/Cr3+ for k2, if equal amount of the k1 and k2 phases is assumed. The magnetic arrangements have the dominant components along the [110] and [1-10] diagonals and a smaller c component. We use inelastic neutron scattering to investigate the spin excitations, which comprise a mixture of dispersive spin waves propagating from the magnetic Bragg peaks and resonance modes centered at equal energy steps of 4.5 meV. We interpret these as acoustic and optical spin wave branches, but show that the neutron scattering cross sections of transitions within a unit of two corner-sharing tetrahedra match the observed intensity distribution of the resonances. The distinctive fingerprint of clusterlike excitations in the optical spin wave branches suggests that propagating excitations are localized by the complex crystal structure and magnetic orders.
  •  
3.
  •  
4.
  • Ahmed, Towfiq, et al. (författare)
  • Correlation dynamics and enhanced signals for the identification of serial biomolecules and DNA bases
  • 2014
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 25:12, s. 125705-
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanopore-based sequencing has demonstrated a significant potential for the development of fast, accurate, and cost-efficient fingerprinting techniques for next generation molecular detection and sequencing. We propose a specific multilayered graphene-based nanopore device architecture for the recognition of single biomolecules. Molecular detection and analysis can be accomplished through the detection of transverse currents as the molecule or DNA base translocates through the nanopore. To increase the overall signal-to-noise ratio and the accuracy, we implement a new 'multi-point cross-correlation' technique for identification of DNA bases or other molecules on the single molecular level. We demonstrate that the cross-correlations between each nanopore will greatly enhance the transverse current signal for each molecule. We implement first-principles transport calculations for DNA bases surveyed across a multilayered graphene nanopore system to illustrate the advantages of the proposed geometry. A time-series analysis of the cross-correlation functions illustrates the potential of this method for enhancing the signal-to-noise ratio. This work constitutes a significant step forward in facilitating fingerprinting of single biomolecules using solid state technology.
  •  
5.
  • Boyko, D., et al. (författare)
  • Evolution of magnetic Dirac bosons in a honeycomb lattice
  • 2018
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 97:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine the presence and evolution of magnetic Dirac nodes in the Heisenberg honeycomb lattice. Using linear spin theory, we evaluate the collinear phase diagram as well as the change in the spin dynamics with various exchange interactions. We show that the ferromagnetic structure produces bosonic Dirac and Weyl points due to the competition between the interactions. Furthermore, it is shown that the criteria for magnetic Dirac nodes are coupled to the magnetic structure and not the overall crystal symmetry, where the breaking of inversion symmetry greatly affects the antiferromagnetic configurations. The tunability of the nodal points through variation of the exchange parameters leads to the possibility of controlling Dirac symmetries through an external manipulation of the orbital interactions.
  •  
6.
  •  
7.
  •  
8.
  • Fernandes, R. M., et al. (författare)
  • Two-band superconductivity in doped SrTiO3 films and interfaces
  • 2013
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 87:1, s. 014510-
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the possibility of multiband superconductivity in SrTiO3 films and interfaces using a two-dimensional two-band model. In the undoped compound, one of the bands is occupied whereas the other is empty. As the chemical potential shifts due to doping by negative charge carriers or application of an electric field, the second band becomes occupied and gives rise to a strong enhancement of the transition temperature and a sharp feature in the gap functions, which is manifested in the local density of states spectrum. By comparing our results with tunneling experiments in Nb-doped SrTiO3, we find that intraband pairing dominates over interband pairing, unlike other known multiband superconductors. Given the similarities with the value of the transition temperature and with the band structure of LaAlO3/SrTiO3 heterostructures, we speculate that the superconductivity observed in SrTiO3 interfaces may be similar in nature to that of bulk SrTiO3, involving multiple bands with distinct electronic occupations.
  •  
9.
  • Putnam, R., et al. (författare)
  • Spin channel induced directional dependent spin exchange interactions between divacantly substituted Fe atoms in graphene
  • 2019
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 100:12
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we show the divacant substitution of Fe impurities atom produces the formation of an electron spin channel along the armchair direction of graphene. This spin channel creates a directional dependent spin exchange between impurities. Using density functional theory, we simulated the electronic and magnetic properties for a supercell of graphene with spatial variation of the Fe atoms along either the armchair or zigzag directions. Overall, we find that the exchange interaction between the two Fe atoms fluctuates from ferromagnetic to antiferromagnetic as a function of the spatial distance in the armchair direction. Given the induced magnetic moment and increased density of states at the Fermi level by the surrounding carbon atoms, we conclude that an RKKY-like interaction may characterize the exchange interactions between the Fe atoms. Furthermore, we examined the same interactions for Fe atoms along the zigzag direction in graphene and found no evidence for an RKKY interaction as this system shows a standard exchange between the transition-metal impurities. Therefore, we determine that the spin channel produced through Fe-substitution in graphene induces a directional-dependent spin interaction, which may provide stability to spintronic and multifunctional devices and applications for graphene.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy