SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Harding Larisa E) "

Sökning: WFRF:(Harding Larisa E)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Evans, Alistair R., et al. (författare)
  • The maximum rate of mammal evolution
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:11, s. 4187-4190
  • Tidskriftsartikel (refereegranskat)abstract
    • How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.
  •  
2.
  • Jansson, Roland, et al. (författare)
  • What can multiple phylogenies say about the latitudinal diversity gradient? : a new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses
  • 2013
  • Ingår i: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 67:6, s. 1741-1755
  • Tidskriftsartikel (refereegranskat)abstract
    • We reviewed published phylogenies and selected 111 phylogenetic studies representing mammals, birds, insects, and flowering plants. We then mapped the latitudinal range of all taxa to test the relative importance of the tropical conservatism, out of the tropics, and diversification rate hypotheses in generating latitudinal diversity gradients. Most clades originated in the tropics, with diversity peaking in the zone of origin. Transitions of lineages between latitudinal zones occurred at 16-22% of the tree nodes. The most common type of transition was range expansions of tropical lineages to encompass also temperate latitudes. Thus, adaptation to new climatic conditions may not represent a major obstacle for many clades. These results contradict predictions of the tropical conservatism hypothesis (i.e., few clades colonizing extratropical latitudes), but support the out-of-the-tropics model (i.e., tropical originations and subsequent latitudinal range expansions). Our results suggest no difference in diversification between tropical and temperate sister lineages; thus, diversity of tropical clades was not explained by higher diversification rates in this zone. Moreover, lineages with latitudinal stasis diversified more compared to sister lineages entering a new latitudinal zone. This preserved preexisting diversity differences between latitudinal zones and can be considered a new mechanism for why diversity tends to peak in the zone of origin.
  •  
3.
  • Rodriguez-Castaneda, Genoveva, et al. (författare)
  • Predicting the Fate of Biodiversity Using Species' Distribution Models : Enhancing Model Comparability and Repeatability
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:9, s. e44402-
  • Tidskriftsartikel (refereegranskat)abstract
    • Species distribution modeling (SDM) is an increasingly important tool to predict the geographic distribution of species. Even though many problems associated with this method have been highlighted and solutions have been proposed, little has been done to increase comparability among studies. We reviewed recent publications applying SDMs and found that seventy nine percent failed to report methods that ensure comparability among studies, such as disclosing the maximum probability range produced by the models and reporting on the number of species occurrences used. We modeled six species of Falco from northern Europe and demonstrate that model results are altered by (1) spatial bias in species' occurrence data, (2) differences in the geographic extent of the environmental data, and (3) the effects of transformation of model output to presence/absence data when applying thresholds. Depending on the modeling decisions, forecasts of the future geographic distribution of Falco ranged from range contraction in 80% of the species to no net loss in any species, with the best model predicting no net loss of habitat in Northern Europe. The fact that predictions of range changes in response to climate change in published studies may be influenced by decisions in the modeling process seriously hampers the possibility of making sound management recommendations. Thus, each of the decisions made in generating SDMs should be reported and evaluated to ensure conclusions and policies are based on the biology and ecology of the species being modeled.
  •  
4.
  • Smith, Felisa A, et al. (författare)
  • The evolution of maximum body size of terrestrial mammals
  • 2010
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 330:6008, s. 1216-1219
  • Tidskriftsartikel (refereegranskat)abstract
    • The extinction of dinosaurs at the Cretaceous/Paleogene (K/Pg) boundary was the seminal event that opened the door for the subsequent diversification of terrestrial mammals. Our compilation of maximum body size at the ordinal level by sub-epoch shows a near-exponential increase after the K/Pg. On each continent, the maximum size of mammals leveled off after 40 million years ago and thereafter remained approximately constant. There was remarkable congruence in the rate, trajectory, and upper limit across continents, orders, and trophic guilds, despite differences in geological and climatic history, turnover of lineages, and ecological variation. Our analysis suggests that although the primary driver for the evolution of giant mammals was diversification to fill ecological niches, environmental temperature and land area may have ultimately constrained the maximum size achieved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy