SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hardisty Alex) "

Sökning: WFRF:(Hardisty Alex)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhao, Zhiming, et al. (författare)
  • Reference model guided system design and implementation for interoperable environmental research infrastructures
  • 2015
  • Ingår i: Proceedings - 11th IEEE International Conference on eScience, eScience 2015. - 9781467393256 ; , s. 551-556
  • Konferensbidrag (refereegranskat)abstract
    • Environmental research infrastructures (RIs) support their respective research communities by integrating large-scale sensor/observation networks with data curation services, analytical tools and common operational policies. These RIs are developed as pillars of intra-and interdisciplinary research, however comprehension of the complex, pathologically interconnected aspects of the Earth's ecosystem increasingly requires that researchers conduct their experiments across infrastructure boundaries. Consequently, almost all data-related activities within these infrastructures, from data capture to data usage, needs to be designed to be broadly interoperable in order to enable real interdisciplinary innovation. The Data for Science theme in the EU Horizon 2020 project ENVRIPLUS intends to address this interoperability challenge as it relates to the design, implementation and operation of environmental science RIs, the theme focuses on key issues of data identification and citation, curation, cataloguing, processing, optimization, and provenance, supported by a generic cross-infrastructure reference model.
  •  
2.
  • Hardisty, Alex, et al. (författare)
  • A decadal view of biodiversity informatics: challenges and priorities.
  • 2013
  • Ingår i: BMC ecology. - : Springer Science and Business Media LLC. - 1472-6785. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised. To address the urgent questions around conservation, land-use, environmental change, sustainability, food security and ecosystem services that are facing Governments worldwide, we need to understand how the ecosystem works. So, we need a systems approach to understanding biodiversity that moves significantly beyond taxonomy and species observations. Such an approach needs to look at the whole system to address species interactions, both with their environment and with other species.It is clear that some barriers to progress are sociological, basically persuading people to use the technological solutions that are already available. This is best addressed by developing more effective systems that deliver immediate benefit to the user, hiding the majority of the technology behind simple user interfaces. An infrastructure should be a space in which activities take place and, as such, should be effectively invisible.This community consultation paper positions the role of biodiversity informatics, for the next decade, presenting the actions needed to link the various biodiversity infrastructures invisibly and to facilitate understanding that can support both business and policy-makers. The community considers the goal in biodiversity informatics to be full integration of the biodiversity research community, including citizens' science, through a commonly-shared, sustainable e-infrastructure across all sub-disciplines that reliably serves science and society alike.
  •  
3.
  • Hardisty, Alex R., et al. (författare)
  • BioVeL: A virtual laboratory for data analysis and modelling in biodiversity science and ecology
  • 2016
  • Ingår i: BMC Ecology. - : Springer Science and Business Media LLC. - 1472-6785. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2016 The Author(s).Background: Making forecasts about biodiversity and giving support to policy relies increasingly on large collections of data held electronically, and on substantial computational capability and capacity to analyse, model, simulate and predict using such data. However, the physically distributed nature of data resources and of expertise in advanced analytical tools creates many challenges for the modern scientist. Across the wider biological sciences, presenting such capabilities on the Internet (as "Web services") and using scientific workflow systems to compose them for particular tasks is a practical way to carry out robust "in silico" science. However, use of this approach in biodiversity science and ecology has thus far been quite limited. Results: BioVeL is a virtual laboratory for data analysis and modelling in biodiversity science and ecology, freely accessible via the Internet. BioVeL includes functions for accessing and analysing data through curated Web services; for performing complex in silico analysis through exposure of R programs, workflows, and batch processing functions; for on-line collaboration through sharing of workflows and workflow runs; for experiment documentation through reproducibility and repeatability; and for computational support via seamless connections to supporting computing infrastructures. We developed and improved more than 60 Web services with significant potential in many different kinds of data analysis and modelling tasks. We composed reusable workflows using these Web services, also incorporating R programs. Deploying these tools into an easy-to-use and accessible 'virtual laboratory', free via the Internet, we applied the workflows in several diverse case studies. We opened the virtual laboratory for public use and through a programme of external engagement we actively encouraged scientists and third party application and tool developers to try out the services and contribute to the activity. Conclusions: Our work shows we can deliver an operational, scalable and flexible Internet-based virtual laboratory to meet new demands for data processing and analysis in biodiversity science and ecology. In particular, we have successfully integrated existing and popular tools and practices from different scientific disciplines to be used in biodiversity and ecological research.
  •  
4.
  • Kissling, W. Daniel, et al. (författare)
  • Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale
  • 2018
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 93:1, s. 600-625
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2017 Cambridge Philosophical Society. Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, we assess the challenges of a 'Big Data' approach to building global EBV data products across taxa and spatiotemporal scales, focusing on species distribution and abundance. The majority of currently available data on species distributions derives from incidentally reported observations or from surveys where presence-only or presence-absence data are sampled repeatedly with standardized protocols. Most abundance data come from opportunistic population counts or from population time series using standardized protocols (e.g. repeated surveys of the same population from single or multiple sites). Enormous complexity exists in integrating these heterogeneous, multi-source data sets across space, time, taxa and different sampling methods. Integration of such data into global EBV data products requires correcting biases introduced by imperfect detection and varying sampling effort, dealing with different spatial resolution and extents, harmonizing measurement units from different data sources or sampling methods, applying statistical tools and models for spatial inter- or extrapolation, and quantifying sources of uncertainty and errors in data and models. To support the development of EBVs by the Group on Earth Observations Biodiversity Observation Network (GEO BON), we identify 11 key workflow steps that will operationalize the process of building EBV data products within and across research infrastructures worldwide. These workflow steps take multiple sequential activities into account, including identification and aggregation of various raw data sources, data quality control, taxonomic name matching and statistical modelling of integrated data. We illustrate these steps with concrete examples from existing citizen science and professional monitoring projects, including eBird, the Tropical Ecology Assessment and Monitoring network, the Living Planet Index and the Baltic Sea zooplankton monitoring. The identified workflow steps are applicable to both terrestrial and aquatic systems and a broad range of spatial, temporal and taxonomic scales. They depend on clear, findable and accessible metadata, and we provide an overview of current data and metadata standards. Several challenges remain to be solved for building global EBV data products: (i) developing tools and models for combining heterogeneous, multi-source data sets and filling data gaps in geographic, temporal and taxonomic coverage, (ii) integrating emerging methods and technologies for data collection such as citizen science, sensor networks, DNA-based techniques and satellite remote sensing, (iii) solving major technical issues related to data product structure, data storage, execution of workflows and the production process/cycle as well as approaching technical interoperability among research infrastructures, (iv) allowing semantic interoperability by developing and adopting standards and tools for capturing consistent data and metadata, and (v) ensuring legal interoperability by endorsing open data or data that are free from restrictions on use, modification and sharing. Addressing these challenges is critical for biodiversity research and for assessing progress towards conservation policy targets and sustainable development goals.
  •  
5.
  • Koureas, Dimitrios, et al. (författare)
  • Community engagement : The ‘last mile’ challenge for European research e-infrastructures
  • 2016
  • Ingår i: Research Ideas and Outcomes. - : Pensoft Publishers. - 2367-7163. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Europe is building its Open Science Cloud; a set of robust and interoperable e-infrastructures with the capacity to provide data and computational solutions through cloud-based services. The development and sustainable operation of such e-infrastructures are at the forefront of European funding priorities. The research community, however, is still reluctant to engage at the scale required to signal a Europe-wide change in the mode of operation of scientific practices. The striking differences in uptake rates between researchers from different scientific domains indicate that communities do not equally share the benefits of the above European investments. We highlight the need to support research communities in organically engaging with the European Open Science Cloud through the development of trustworthy and interoperable Virtual Research Environments. These domain-specific solutions can support communities in gradually bridging technical and socio-cultural gaps between traditional and open digital science practice, better diffusing the benefits of European e-infrastructures.
  •  
6.
  • Koureas, Dimitrios, et al. (författare)
  • Unifying European Biodiversity Informatics (Bio Unify)
  • 2016
  • Ingår i: Research Ideas and Outcomes. - : Pensoft Publishers. - 2367-7163. ; 2:e7787, s. 1-23
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to preserve the variety of life on Earth, we must understand it better. Biodiversity research is at a pivotal point with research projects generating data at an ever increasing rate. Structuring, aggregating, linking and processing these data in a meaningful way is a major challenge. The systematic application of information management and engineering technologies in the study of biodiversity (biodiversity informatics) help transform data to knowledge. However, concerted action is required to be taken by existing e-infrastructures to develop and adopt common standards, provisions for interoperability and avoid overlapping in functionality. This would result in the unification of the currently fragmented landscape that restricts European biodiversity research from reaching its full potential. The overarching goal of this COST Action is to coordinate existing research and capacity building efforts, through a bottom-up trans-disciplinary approach, by unifying biodiversity informatics communities across Europe in order to support the long-term vision of modelling biodiversity on earth. BioUnify will: 1. specify technical requirements, evaluate and improve models for efficient data and workflow storage, sharing and re-use, within and between different biodiversity communities; 2. mobilise taxonomic, ecological, genomic and biomonitoring data generated and curated by natural history collections, research networks and remote sensing sources in Europe; 3. leverage results of ongoing biodiversity informatics projects by identifying and developing functional synergies on individual, group and project level; 4. raise technical awareness and transfer skills between biodiversity researchers and information technologists; 5. formulate a viable roadmap for achieving the long-term goals for European biodiversity informatics, which ensures alignment with global activities and translates into efficient biodiversity policy.
  •  
7.
  • Leidenberger, Sonja, et al. (författare)
  • Evaluating the potential of ecological niche modelling as a component in marine non-indigenous species risk assessments
  • 2015
  • Ingår i: Marine Pollution Bulletin. - : Elsevier. - 0025-326X .- 1879-3363. ; 97:1-2, s. 470-487
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine biological invasions have increased with the development of global trading, causing the homogenization of communities and the decline of biodiversity. A main vector is ballast water exchange from shipping. This study evaluates the use of ecological niche modelling (ENM) to predict the spread of 18 non-indigenous species (NIS) along shipping routes and their potential habitat suitability (hot/cold spots) in the Baltic Sea and Northeast Atlantic. Results show that, contrary to current risk assessment methods, temperature and sea ice concentration determine habitat suitability for 61% of species, rather than salinity (11%). We show high habitat suitability for NIS in the Skagerrak and Kattegat, a transitional area for NIS entering or leaving the Baltic Sea. As many cases of NIS introduction in the marine environment are associated with shipping pathways, we explore how ENM can be used to provide valuable information on the potential spread of NIS for ballast water risk assessment. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy