SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hariz M I) "

Sökning: WFRF:(Hariz M I)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Martinez-Ramirez, Daniel, et al. (författare)
  • Efficacy and Safety of Deep Brain Stimulation in Tourette Syndrome : The International Tourette Syndrome Deep Brain Stimulation Public Database and Registry
  • 2018
  • Ingår i: JAMA Neurology. - : American Medical Association. - 2168-6149 .- 2168-6157. ; 75:3, s. 353-359
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Collective evidence has strongly suggested that deep brain stimulation (DBS) is a promising therapy for Tourette syndrome.OBJECTIVE To assess the efficacy and safety of DBS in a multinational cohort of patients with Tourette syndrome.DESIGN, SETTING, AND PARTICIPANTS The prospective International Deep Brain Stimulation Database and Registry included 185 patients with medically refractory Tourette syndrome who underwent DBS implantation from January 1, 2012, to December 31, 2016, at 31 institutions in 10 countries worldwide.EXPOSURES Patients with medically refractory symptoms received DBS implantation in the centromedian thalamic region (93 of 163 [57.1%]), the anterior globus pallidus internus (41 of 163 [25.2%]), the posterior globus pallidus internus (25 of 163 [15.3%]), and the anterior limb of the internal capsule (4 of 163 [2.5%]).MAIN OUTCOMES AND MEASURES Scores on the Yale Global Tic Severity Scale and adverse events.RESULTS The International Deep Brain Stimulation Database and Registry enrolled 185 patients (of 171 with available data, 37 females and 134 males; mean [SD] age at surgery, 29.1 [10.8] years [range, 13-58 years]). Symptoms of obsessive-compulsive disorder were present in 97 of 151 patients (64.2%) and 32 of 148 (21.6%) had a history of self-injurious behavior. The mean (SD) total Yale Global Tic Severity Scale score improved from 75.01 (18.36) at baseline to 41.19 (20.00) at 1 year after DBS implantation (P<.001). The mean (SD) motor tic subscore improved from 21.00 (3.72) at baseline to 12.91 (5.78) after 1 year (P <.001), and the mean (SD) phonic tic subscore improved from 16.82 (6.56) at baseline to 9.63 (6.99) at 1 year (P <.001). The overall adverse event rate was 35.4%(56 of 158 patients), with intracranial hemorrhage occurring in 2 patients (1.3%), infection in 4 patients with 5 events (3.2%), and lead explantation in 1 patient (0.6%). The most common stimulation-induced adverse effects were dysarthria (10 [6.3%]) and paresthesia (13 [8.2%]).CONCLUSIONS AND RELEVANCE Deep brain stimulationwas associated with symptomatic improvement in patients with Tourette syndrome but also with important adverse events. A publicly available website on outcomes of DBS in patients with Tourette syndrome has been provided.
  •  
4.
  • Foltynie, T, et al. (författare)
  • MRI-guided STN DBS in Parkinson's disease without microelectrode recording : efficacy and safety
  • 2011
  • Ingår i: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ. - 0022-3050 .- 1468-330X. ; 82:4, s. 358-363
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a commonly employed therapeutic procedure for patients with Parkinson's disease uncontrolled by medical therapies. This series describes the outcomes of 79 consecutive patients that underwent bilateral STN DBS at the National Hospital for Neurology and Neurosurgery between November 2002 and November 2008 using an MRI-guided surgical technique without microelectrode recording. Patients underwent immediate postoperative stereotactic MR imaging. The mean (SD) error in electrode placement was 1.3 (0.6) mm. There were no haemorrhagic complications. At a median follow-up period of 12 months, there was a mean improvement in the off-medication motor part of the Unified Parkinson's Disease Rating Scale (UPDRS III) of 27.7 points (SD 13.8) equivalent to a mean improvement of 52% (p<0.0001). In addition, there were significant improvements in dyskinesia duration, disability and pain, with a mean reduction in on-medication dyskinesia severity (sum of dyskinesia duration, disability and pain from UPDRS IV) from 3.15 (SD 2.33) pre-operatively, to 1.56 (SD 1.92) post-operatively (p=0.0001). Quality of life improved by a mean of 5.5 points (median 7.9 points, SD 17.3) on the Parkinson's disease Questionnaire 39 summary index. This series confirms that image-guided STN DBS without microelectrode recording can lead to substantial improvements in motor disability of well-selected PD patients with accompanying improvements in quality of life and most importantly, with very low morbidity.
  •  
5.
  • Krauss, Joachim K., et al. (författare)
  • Technology of deep brain stimulation : current status and future directions
  • 2021
  • Ingår i: Nature Reviews Neurology. - : Springer Nature. - 1759-4758 .- 1759-4766. ; 17:2, s. 75-87
  • Forskningsöversikt (refereegranskat)abstract
    • Deep brain stimulation (DBS) is a neurosurgical procedure that allows targeted circuit-based neuromodulation. DBS is a standard of care in Parkinson disease, essential tremor and dystonia, and is also under active investigation for other conditions linked to pathological circuitry, including major depressive disorder and Alzheimer disease. Modern DBS systems, borrowed from the cardiac field, consist of an intracranial electrode, an extension wire and a pulse generator, and have evolved slowly over the past two decades. Advances in engineering and imaging along with an improved understanding of brain disorders are poised to reshape how DBS is viewed and delivered to patients. Breakthroughs in electrode and battery designs, stimulation paradigms, closed-loop and on-demand stimulation, and sensing technologies are expected to enhance the efficacy and tolerability of DBS. In this Review, we provide a comprehensive overview of the technical development of DBS, from its origins to its future. Understanding the evolution of DBS technology helps put the currently available systems in perspective and allows us to predict the next major technological advances and hurdles in the field.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy