SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Harman Zoltán) "

Sökning: WFRF:(Harman Zoltán)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Papoulia, Asimina, et al. (författare)
  • Ab initio electronic factors of the A and B hyperfine structure constants for the 5s(2)5p6s( 1,3)P(1)(0) states in Sn I
  • 2021
  • Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information. - : American Physical Society. - 2469-9926 .- 2469-9934. ; 103:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale ab initio calculations of the electronic contribution to the electric quadrupole hyperfine constant B were performed for the 5s(2)5p6s( 1,3)P(1)(0)excited states of neutral tin. To probe the sensitivity of B to different electron correlation effects, three sets of variational multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction calculations employing different strategies were carried out. In addition, a fourth set of calculations was based on the configuration interaction Dirac-Fock-Sturm theory. For the 5s(2)5p6s( 1)P(1)(0) state, the final value of B/Q = 703(50) MHz/b differs by 0.4% from the one recently used by Yordanov et al. [Commun. Phys. 3, 107 (2020)] to extract the nuclear quadrupole moments Q for tin isotopes in the range Sn117-131 from collinear laser spectroscopy measurements. Efforts were made to provide a realistic theoretical uncertainty for the final B/Q value of the 5s(2)5p6s( 1)P(1)(0) state based on statistical principles and on correlation with the electronic contribution to the magnetic dipole hyperfine constant A.
  •  
2.
  • Papoulia, Asimina, et al. (författare)
  • Ab initio electronic factors of the A and B hyperfine structure constants for the 5s25p6s1,3P01 states in Sn I
  • 2021
  • Ingår i: Physical Review A. - 2469-9926. ; 103:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale ab initio calculations of the electronic contribution to the electric quadrupole hyperfine constant B were performed for the 5s25p6s1,3Po1 excited states of neutral tin. To probe the sensitivity of B to different electron correlation effects, three sets of variational multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction calculations employing different strategies were carried out. In addition, a fourth set of calculations was based on the configuration interaction Dirac-Fock-Sturm theory. For the 5s25p6s 1Po1 state, the final value of B/Q=703(50) MHz/b differs by 0.4% from the one recently used by Yordanov et al. [Commun. Phys. 3, 107 (2020)] to extract the nuclear quadrupole moments Q for tin isotopes in the range 117−131Sn from collinear laser spectroscopy measurements. Efforts were made to provide a realistic theoretical uncertainty for the final B/Q value of the 5s25p6s 1Po1 state based on statistical principles and on correlation with the electronic contribution to the magnetic dipole hyperfine constant A.
  •  
3.
  • Yordanov, Deyan T., et al. (författare)
  • Structural trends in atomic nuclei from laser spectroscopy of tin
  • 2020
  • Ingår i: Communications Physics. - : Springer Nature. - 2399-3650. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tin is the chemical element with the largest number of stable isotopes. Its complete proton shell, comparable with the closed electron shells in the chemically inert noble gases, is not a mere precursor to extended stability; since the protons carry the nuclear charge, their spatial arrangement also drives the nuclear electromagnetism. We report high-precision measurements of the electromagnetic moments and isomeric differences in charge radii between the lowest 1/2(+), 3/2(+), and 11/2(-) states in Sn117-131, obtained by collinear laser spectroscopy. Supported by state-of-the-art atomic-structure calculations, the data accurately show a considerable attenuation of the quadrupole moments in the closed-shell tin isotopes relative to those of cadmium, with two protons less. Linear and quadratic mass-dependent trends are observed. While microscopic density functional theory explains the global behaviour of the measured quantities, interpretation of the local patterns demands higher-fidelity modelling. Measurements of the hyperfine structure of chemical elements isotopes provide unique insight into the atomic nucleus in a nuclear model-independent way. The authors present collinear laser spectroscopy data obtained at the CERN ISOLDE and measure hyperfine splitting along a long chain of odd-mass tin isotopes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy