SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Harrison Shannon L.) "

Sökning: WFRF:(Harrison Shannon L.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hudson, Lawrence N, et al. (författare)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
3.
  •  
4.
  • Cockell, Charles S., et al. (författare)
  • Sample Collection and Return from Mars : Optimising Sample Collection Based on the Microbial Ecology of Terrestrial Volcanic Environments
  • 2019
  • Ingår i: Space Science Reviews. - : Springer. - 0038-6308 .- 1572-9672. ; 215:7
  • Forskningsöversikt (refereegranskat)abstract
    • With no large-scale granitic continental crust, all environments on Mars are fundamentally derived from basaltic sources or, in the case of environments such as ices, evaporitic, and sedimentary deposits, influenced by the composition of the volcanic crust. Therefore, the selection of samples on Mars by robots and humans for investigating habitability or testing for the presence of life should be guided by our understanding of the microbial ecology of volcanic terrains on the Earth. In this paper, we discuss the microbial ecology of volcanic rocks and hydrothermal systems on the Earth. We draw on microbiological investigations of volcanic environments accomplished both by microbiology-focused studies and Mars analog studies such as the NASA BASALT project. A synthesis of these data emphasises a number of common patterns that include: (1) the heterogeneous distribution of biomass and diversity in all studied materials, (2) physical, chemical, and biological factors that can cause heterogeneous microbial biomass and diversity from sub-millimetre scales to kilometre scales, (3) the difficulty of a priori prediction of which organisms will colonise given materials, and (4) the potential for samples that are habitable, but contain no evidence of a biota. From these observations, we suggest an idealised strategy for sample collection. It includes: (1) collection of multiple samples in any given material type (∼9 or more samples), (2) collection of a coherent sample of sufficient size (∼10 cm3∼10 cm3) that takes into account observed heterogeneities in microbial distribution in these materials on Earth, and (3) collection of multiple sample suites in the same material across large spatial scales. We suggest that a microbial ecology-driven strategy for investigating the habitability and presence of life on Mars is likely to yield the most promising sample set of the greatest use to the largest number of astrobiologists and planetary scientists.
  •  
5.
  • Goode, Chloe K., et al. (författare)
  • Control of high-speed jumps in muscle and spring actuated systems : a comparative study of take-off energetics in bush-crickets (Mecopoda elongata) and locusts (Schistocerca gregaria)
  • 2023
  • Ingår i: Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology. - : Springer Nature. - 0174-1578 .- 1432-136X. ; 193, s. 597-605
  • Tidskriftsartikel (refereegranskat)abstract
    • The Orthoptera are a diverse insect order well known for their locomotive capabilities. To jump, the bush-cricket uses a muscle actuated (MA) system in which leg extension is actuated by contraction of the femoral muscles of the hind legs. In comparison, the locust uses a latch mediated spring actuated (LaMSA) system, in which leg extension is actuated by the recoil of spring-like structure in the femur. The aim of this study was to describe the jumping kinematics of Mecopoda elongata (Tettigoniidae) and compare this to existing data in Schistocerca gregaria (Acrididae), to determine differences in control of rotation during take-off between similarly sized MA and LaMSA jumpers. 269 jumps from 67 individuals of M. elongata with masses from 0.014 g to 3.01 g were recorded with a high-speed camera setup. In M. elongata, linear velocity increased with mass0.18 and the angular velocity (pitch) decreased with mass−0.13. In S. gregaria, linear velocity is constant and angular velocity decreases with mass−0.24. Despite these differences in velocity scaling, the ratio of translational kinetic energy to rotational kinetic energy was similar for both species. On average, the energy distribution of M. elongata was distributed 98.8% to translational kinetic energy and 1.2% to rotational kinetic energy, whilst in S. gregaria it is 98.7% and 1.3%, respectively. This energy distribution was independent of size for both species. Despite having two different jump actuation mechanisms, the ratio of translational and rotational kinetic energy formed during take-off is fixed across these distantly related orthopterans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy