SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hartley D. J.) "

Sökning: WFRF:(Hartley D. J.)

  • Resultat 1-10 av 62
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  •  
4.
  • Bergman, A. S., et al. (författare)
  • 280 GHz Focal Plane Unit Design and Characterization for the SPIDER-2 Suborbital Polarimeter
  • 2018
  • Ingår i: Journal of Low Temperature Physics. - : Springer Science and Business Media LLC. - 0022-2291 .- 1573-7357. ; 193:5-6, s. 1075-1084
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the construction and characterization of the 280 GHz bolometric focal plane units (FPUs) to be deployed on the second flight of the balloon-borne SPIDER instrument. These FPUs are vital to SPIDER's primary science goal of detecting or placing an upper limit on the amplitude of the primordial gravitational wave signature in the cosmic microwave background (CMB) by constraining the B-mode contamination in the CMB from Galactic dust emission. Each 280 GHz focal plane contains a 16 x 16 grid of corrugated silicon feedhorns coupled to an array of aluminum-manganese transition-edge sensor (TES) bolometers fabricated on 150 mm diameter substrates. In total, the three 280 GHz FPUs contain 1530 polarization-sensitive bolometers (765 spatial pixels) optimized for the low loading environment in flight and read out by time-division SQUID multiplexing. In this paper, we describe the mechanical, thermal, and magnetic shielding architecture of the focal planes and present cryogenic measurements which characterize yield and the uniformity of several bolometer parameters. The assembled FPUs have high yields, with one array as high as 95% including defects from wiring and readout. We demonstrate high uniformity in device parameters, finding the median saturation power for each TES array to be similar to 3 pW at 300 mK with a less than 6% variation across each array at 1 sigma. These focal planes will be deployed alongside the 95 and 150 GHz telescopes in the SPIDER-2 instrument, slated to fly from McMurdo Station in Antarctica in December 2018.
  •  
5.
  • Palmese, A., et al. (författare)
  • Stellar mass as a galaxy cluster mass proxy : application to the Dark Energy Survey redMaPPer clusters
  • 2020
  • Ingår i: \mnras. - : Oxford University Press (OUP). ; 493:4, s. 4591-4606
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce a galaxy cluster mass observable, μ⋆, based on the stellar masses of cluster members, and we present results for the Dark Energy Survey (DES) Year 1 (Y1) observations. Stellar masses are computed using a Bayesian model averaging method, and are validated for DES data using simulations and COSMOS data. We show that μ⋆ works as a promising mass proxy by comparing our predictions to X-ray measurements. We measure the X-ray temperature–μ⋆ relation for a total of 129 clusters matched between the wide-field DES Y1 redMaPPer catalogue and Chandra and XMM archival observations, spanning the redshift range 0.1 < z < 0.7. For a scaling relation that is linear in logarithmic space, we find a slope of α = 0.488 ± 0.043 and a scatter in the X-ray temperature at fixed μ⋆ of σlnTX|μ⋆=0.266+0.019−0.020 for the joint sample. By using the halo mass scaling relations of the X-ray temperature from the Weighing the Giants program, we further derive the μ⋆-conditioned scatter in mass, finding σlnM|μ⋆=0.26+0.15−0.10⁠. These results are competitive with well-established cluster mass proxies used for cosmological analyses, showing that μ⋆ can be used as a reliable and physically motivated mass proxy to derive cosmological constraints.
  •  
6.
  • Ade, P. A. R., et al. (författare)
  • A Constraint on Primordial B-modes from the First Flight of the Spider Balloon-borne Telescope
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 927:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first linear polarization measurements from the 2015 long-duration balloon flight of SPIDER, which is an experiment that is designed to map the polarization of the cosmic microwave background (CMB) on degree angular scales. The results from these measurements include maps and angular power spectra from observations of 4.8% of the sky at 95 and 150 GHz, along with the results of internal consistency tests on these data. While the polarized CMB anisotropy from primordial density perturbations is the dominant signal in this region of sky, Galactic dust emission is also detected with high significance. Galactic synchrotron emission is found to be negligible in the SPIDER bands. We employ two independent foreground-removal techniques to explore the sensitivity of the cosmological result to the assumptions made by each. The primary method uses a dust template derived from Planck data to subtract the Galactic dust signal. A second approach, which constitutes a joint analysis of SPIDER and Planck data in the harmonic domain, assumes a modified-blackbody model for the spectral energy distribution of the dust with no constraint on its spatial morphology. Using a likelihood that jointly samples the template amplitude and r parameter space, we derive 95% upper limits on the primordial tensor-to-scalar ratio from Feldman-Cousins and Bayesian constructions, finding r < 0.11 and r < 0.19, respectively. Roughly half the uncertainty in r derives from noise associated with the template subtraction. New data at 280 GHz from SPIDER´s second flight will complement the Planck polarization maps, providing powerful measurements of the polarized Galactic dust emission.
  •  
7.
  • Filippini, J. P., et al. (författare)
  • In-Flight Gain Monitoring of SPIDER's Transition-Edge Sensor Arrays
  • 2022
  • Ingår i: Journal of Low Temperature Physics. - : Springer Science and Business Media LLC. - 0022-2291 .- 1573-7357. ; 209:3-4, s. 649-657
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments deploying large arrays of transition-edge sensors (TESs) often require a robust method to monitor gain variations with minimal loss of observing time. We propose a sensitive and non-intrusive method for monitoring variations in TES responsivity using small square waves applied to the TES bias. We construct an estimator for a TES's small-signal power response from its electrical response that is exact in the limit of strong electrothermal feedback. We discuss the application and validation of this method using flight data from SPIDER, a balloon-borne telescope that observes the polarization of the cosmic microwave background with more than 2000 TESs. This method may prove useful for future balloon- and space-based instruments, where observing time and ground control bandwidth are limited.
  •  
8.
  • Gambrel, A. E., et al. (författare)
  • The XFaster Power Spectrum and Likelihood Estimator for the Analysis of Cosmic Microwave Background Maps
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 922:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the XFaster analysis package, a fast, iterative angular power spectrum estimator based on a diagonal approximation to the quadratic Fisher matrix estimator. It uses Monte Carlo simulations to compute noise biases and filter transfer functions and is thus a hybrid of both Monte Carlo and quadratic estimator methods. In contrast to conventional pseudo-Cℓ–based methods, the algorithm described here requires a minimal number of simulations and does not require them to be precisely representative of the data to estimate accurate covariance matrices for the bandpowers. The formalism works with polarization-sensitive observations and also data sets with identical, partially overlapping, or independent survey regions. The method was first implemented for the analysis of BOOMERanG data and also used as part of the Planck analysis. Here we describe the full, publicly available analysis package, written in Python, as developed for the analysis of data from the 2015 flight of the Spider instrument. The package includes extensions for self-consistently estimating null spectra and estimating fits for Galactic foreground contributions. We show results from the extensive validation of XFaster using simulations and its application to the Spider data set.
  •  
9.
  • Grandis, S., et al. (författare)
  • Validation of selection function, sample contamination and mass calibration in galaxy cluster samples
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 498:1, s. 771-798
  • Tidskriftsartikel (refereegranskat)abstract
    • We construct and validate the selection function of the MARD-Y3 galaxy cluster sample. This sample was selected through optical follow-up of the 2nd ROSAT faint source catalogue with Dark Energy Survey year 3 data. The selection function is modelled by combining an empirically constructed X-ray selection function with an incompleteness model for the optical follow-up. We validate the joint selection function by testing the consistency of the constraints on the X-ray flux–mass and richness–mass scaling relation parameters derived from different sources of mass information: (1) cross-calibration using South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) clusters, (2) calibration using number counts in X-ray, in optical and in both X-ray and optical while marginalizing over cosmological parameters, and (3) other published analyses. We find that the constraints on the scaling relation from the number counts and SPT-SZ cross-calibration agree, indicating that our modelling of the selection function is adequate. Furthermore, we apply a largely cosmology independent method to validate selection functions via the computation of the probability of finding each cluster in the SPT-SZ sample in the MARD-Y3 sample and vice versa. This test reveals no clear evidence for MARD-Y3 contamination, SPT-SZ incompleteness or outlier fraction. Finally, we discuss the prospects of the techniques presented here to limit systematic selection effects in future cluster cosmological studies.
  •  
10.
  • Hartley, Philippa, et al. (författare)
  • SKA Science Data Challenge 2: analysis and results
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:2, s. 1967-1993
  • Tidskriftsartikel (refereegranskat)abstract
    • The Square Kilometre Array Observatory (SKAO) will explore the radio sky to new depths in order to conduct transformational science. SKAO data products made available to astronomers will be correspondingly large and complex, requiring the application of advanced analysis techniques to extract key science findings. To this end, SKAO is conducting a series of Science Data Challenges, each designed to familiarize the scientific community with SKAO data and to drive the development of new analysis techniques. We present the results from Science Data Challenge 2 (SDC2), which invited participants to find and characterize 233 245 neutral hydrogen (H i) sources in a simulated data product representing a 2000 h SKA-Mid spectral line observation from redshifts 0.25-0.5. Through the generous support of eight international supercomputing facilities, participants were able to undertake the Challenge using dedicated computational resources. Alongside the main challenge, 'reproducibility awards' were made in recognition of those pipelines which demonstrated Open Science best practice. The Challenge saw over 100 participants develop a range of new and existing techniques, with results that highlight the strengths of multidisciplinary and collaborative effort. The winning strategy - which combined predictions from two independent machine learning techniques to yield a 20 per cent improvement in overall performance - underscores one of the main Challenge outcomes: that of method complementarity. It is likely that the combination of methods in a so-called ensemble approach will be key to exploiting very large astronomical data sets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 62

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy