SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hartmann Julia) "

Sökning: WFRF:(Hartmann Julia)

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haenssle, H A, et al. (författare)
  • Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.
  • 2018
  • Ingår i: Annals of Oncology. - : Elsevier BV. - 1569-8041 .- 0923-7534. ; 29:8, s. 1836-1842
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep learning convolutional neural networks (CNN) may facilitate melanoma detection, but data comparing a CNN's diagnostic performance to larger groups of dermatologists are lacking.Google's Inception v4 CNN architecture was trained and validated using dermoscopic images and corresponding diagnoses. In a comparative cross-sectional reader study a 100-image test-set was used (level-I: dermoscopy only; level-II: dermoscopy plus clinical information and images). Main outcome measures were sensitivity, specificity and area under the curve (AUC) of receiver operating characteristics (ROC) for diagnostic classification (dichotomous) of lesions by the CNN versus an international group of 58 dermatologists during level-I or -II of the reader study. Secondary end points included the dermatologists' diagnostic performance in their management decisions and differences in the diagnostic performance of dermatologists during level-I and -II of the reader study. Additionally, the CNN's performance was compared with the top-five algorithms of the 2016 International Symposium on Biomedical Imaging (ISBI) challenge.In level-I dermatologists achieved a mean (±standard deviation) sensitivity and specificity for lesion classification of 86.6% (±9.3%) and 71.3% (±11.2%), respectively. More clinical information (level-II) improved the sensitivity to 88.9% (±9.6%, P=0.19) and specificity to 75.7% (±11.7%, P<0.05). The CNN ROC curve revealed a higher specificity of 82.5% when compared with dermatologists in level-I (71.3%, P<0.01) and level-II (75.7%, P<0.01) at their sensitivities of 86.6% and 88.9%, respectively. The CNN ROC AUC was greater than the mean ROC area of dermatologists (0.86 versus 0.79, P<0.01). The CNN scored results close to the top three algorithms of the ISBI 2016 challenge.For the first time we compared a CNN's diagnostic performance with a large international group of 58 dermatologists, including 30 experts. Most dermatologists were outperformed by the CNN. Irrespective of any physicians' experience, they may benefit from assistance by a CNN's image classification.This study was registered at the German Clinical Trial Register (DRKS-Study-ID: DRKS00013570; https://www.drks.de/drks_web/).
  •  
2.
  • Amare, Azmeraw, et al. (författare)
  • Association of Polygenic Score and the involvement of Cholinergic and Glutamatergic Pathways with Lithium Treatment Response in Patients with Bipolar Disorder.
  • 2023
  • Ingår i: Research square. - : Research Square Platform LLC.
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N=2,367) and replicated in the combined PsyCourse (N=89) and BipoLife (N=102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P<����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������.
  •  
3.
  • Amare, Azmeraw T, et al. (författare)
  • Association of polygenic score and the involvement of cholinergic and glutamatergic pathways with lithium treatment response in patients with bipolar disorder.
  • 2023
  • Ingår i: Molecular psychiatry. - 1476-5578. ; 28, s. 5251-5261
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental healthdisorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N=2367) and replicated in the combined PsyCourse (N=89) and BipoLife (N=102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P<0.05. Li+PGS was positively associated with lithium treatment response in the ConLi+Gen cohort, in both the categorical (P=9.8×10-12, R2=1.9%) and continuous (P=6.4×10-9, R2=2.6%) outcomes. Compared to bipolar patients in the 1st decile of the risk distribution, individuals in the 10th decile had 3.47-fold (95%CI: 2.22-5.47) higher odds of responding favorably to lithium. The results were replicated in the independent cohorts for the categorical treatment outcome (P=3.9×10-4, R2=0.9%), but not for the continuous outcome (P=0.13). Gene-based analyses revealed 36 candidate genes that are enriched in biological pathways controlled by glutamate and acetylcholine. Li+PGS may be useful in the development of pharmacogenomic testing strategies by enabling a classification of bipolar patients according to their response to treatment.
  •  
4.
  •  
5.
  • Schöpf, Julia, et al. (författare)
  • Multi-omic and functional analysis for classification and treatment of sarcomas with FUS-TFCP2 or EWSR1-TFCP2 fusions
  • 2024
  • Ingår i: Nature Communications. - 2041-1723. ; 15, s. 1-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Linking clinical multi-omics with mechanistic studies may improve the understanding of rare cancers. We leverage two precision oncology programs to investigate rhabdomyosarcoma with FUS/EWSR1-TFCP2 fusions, an orphan malignancy without effective therapies. All tumors exhibit outlier ALK expression, partly accompanied by intragenic deletions and aberrant splicing resulting in ALK variants that are oncogenic and sensitive to ALK inhibitors. Additionally, recurrent CKDN2A/MTAP co-deletions provide a rationale for PRMT5-targeted therapies. Functional studies show that FUS-TFCP2 blocks myogenic differentiation, induces transcription of ALK and truncated TERT, and inhibits DNA repair. Unlike other fusion-driven sarcomas, TFCP2-rearranged tumors exhibit genomic instability and signs of defective homologous recombination. DNA methylation profiling demonstrates a close relationship with undifferentiated sarcomas. In two patients, sarcoma was preceded by benign lesions carrying FUS-TFCP2, indicating stepwise sarcomagenesis. This study illustrates the potential of linking precision oncology with preclinical research to gain insight into the classification, pathogenesis, and therapeutic vulnerabilities of rare cancers.
  •  
6.
  • Albert, Marie Christine, et al. (författare)
  • Identification of FasL as a crucial host factor driving COVID-19 pathology and lethality
  • 2024
  • Ingår i: Cell Death and Differentiation. - 1350-9047. ; 31:5, s. 544-557
  • Tidskriftsartikel (refereegranskat)abstract
    • The dysregulated immune response and inflammation resulting in severe COVID-19 are still incompletely understood. Having recently determined that aberrant death-ligand-induced cell death can cause lethal inflammation, we hypothesized that this process might also cause or contribute to inflammatory disease and lung failure following SARS-CoV-2 infection. To test this hypothesis, we developed a novel mouse-adapted SARS-CoV-2 model (MA20) that recapitulates key pathological features of COVID-19. Concomitantly with occurrence of cell death and inflammation, FasL expression was significantly increased on inflammatory monocytic macrophages and NK cells in the lungs of MA20-infected mice. Importantly, therapeutic FasL inhibition markedly increased survival of both, young and old MA20-infected mice coincident with substantially reduced cell death and inflammation in their lungs. Intriguingly, FasL was also increased in the bronchoalveolar lavage fluid of critically-ill COVID-19 patients. Together, these results identify FasL as a crucial host factor driving the immuno-pathology that underlies COVID-19 severity and lethality, and imply that patients with severe COVID-19 may significantly benefit from therapeutic inhibition of FasL.
  •  
7.
  • Amici, Julia, et al. (författare)
  • A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030
  • 2022
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 12:17
  • Forskningsöversikt (refereegranskat)abstract
    • This roadmap presents the transformational research ideas proposed by "BATTERY 2030+," the European large-scale research initiative for future battery chemistries. A "chemistry-neutral" roadmap to advance battery research, particularly at low technology readiness levels, is outlined, with a time horizon of more than ten years. The roadmap is centered around six themes: 1) accelerated materials discovery platform, 2) battery interface genome, with the integration of smart functionalities such as 3) sensing and 4) self-healing processes. Beyond chemistry related aspects also include crosscutting research regarding 5) manufacturability and 6) recyclability. This roadmap should be seen as an enabling complement to the global battery roadmaps which focus on expected ultrahigh battery performance, especially for the future of transport. Batteries are used in many applications and are considered to be one technology necessary to reach the climate goals. Currently the market is dominated by lithium-ion batteries, which perform well, but despite new generations coming in the near future, they will soon approach their performance limits. Without major breakthroughs, battery performance and production requirements will not be sufficient to enable the building of a climate-neutral society. Through this "chemistry neutral" approach a generic toolbox transforming the way batteries are developed, designed and manufactured, will be created.
  •  
8.
  • Barends, Thomas R. M., et al. (författare)
  • Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase
  • 2009
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 459, s. 1015-1018
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to respond to light is crucial for most organisms. BLUF is a recently identified photoreceptor protein domain that senses blue light using a FAD chromophore. BLUF domains are present in various proteins from the Bacteria, Euglenozoa and Fungi. Although structures of single-domain BLUF proteins have been determined, none are available for a BLUF protein containing a functional output domain; the mechanism of light activation in this new class of photoreceptors has thus remained poorly understood. Here we report the biochemical, structural and mechanistic characterization of a full-length, active photoreceptor, BlrP1 (also known as KPN_01598), from Klebsiella pneumoniae. BlrP1 consists of a BLUF sensor domain and a phosphodiesterase EAL output domain which hydrolyses cyclic dimeric GMP (c-di-GMP). This ubiquitous second messenger controls motility, biofilm formation, virulence and antibiotic resistance in the Bacteria. Crystal structures of BlrP1 complexed with its substrate and metal ions involved in catalysis or in enzyme inhibition provide a detailed understanding of the mechanism of the EAL-domain c-di-GMP phosphodiesterases. These structures also sketch out a path of light activation of the phosphodiesterase output activity. Photon absorption by the BLUF domain of one subunit of the antiparallel BlrP1 homodimer activates the EAL domain of the second subunit through allosteric communication transmitted through conserved domain-domain interfaces.
  •  
9.
  • Blokland, G. A. M., et al. (författare)
  • Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders
  • 2022
  • Ingår i: Biological Psychiatry. - : Elsevier BV. - 0006-3223 .- 1873-2402. ; 91:1, s. 102-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. Methods: We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. Results: Across disorders, genome-wide significant single nucleotide polymorphism–by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10−8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10−6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10−7; rs73033497, p = 8.8 × 10−7; rs7914279, p = 6.4 × 10−7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10−7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10−7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10−7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). Conclusions: In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels. © 2021 Society of Biological Psychiatry
  •  
10.
  • Boehm, U., et al. (författare)
  • QUAREP-LiMi: a community endeavor to advance quality assessment and reproducibility in light microscopy
  • 2021
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; :18, s. 1423-1426
  • Tidskriftsartikel (refereegranskat)abstract
    • The community-driven initiative Quality Assessment and Reproducibility for Instruments & Images in Light Microscopy (QUAREP-LiMi) wants to improve reproducibility for light microscopy image data through quality control (QC) management of instruments and images. It aims for a common set of QC guidelines for hardware calibration and image acquisition, management and analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy