SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hassan S. Fawad) "

Sökning: WFRF:(Hassan S. Fawad)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akrami, Yashar, et al. (författare)
  • Bimetric gravity is cosmologically viable
  • 2015
  • Ingår i: Physics Letters B. - : Elsevier BV. - 0370-2693 .- 1873-2445. ; 748, s. 37-44
  • Tidskriftsartikel (refereegranskat)abstract
    • Bimetric theory describes gravitational interactions in the presence of an extra spin-2 field. Previous work has suggested that its cosmological solutions are generically plagued by instabilities. We show that by taking the Planck mass for the second metric, M-f, to be small, these instabilities can be pushed back to unobservably early times. In this limit, the theory approaches general relativity with an effective cosmological constant which is, remarkably, determined by the spin-2 interaction scale. This provides a late-time expansion history which is extremely close to Lambda CDM, but with a technically-natural value for the cosmological constant. We find M-f should be no larger than the electroweak scale in order for cosmological perturbations to be stable by big-bang nucleosynthesis. We further show that in this limit the helicity-0 mode is no longer strongly-coupled at low energy scales.
  •  
2.
  • Apolo, Luis, et al. (författare)
  • Gauge and global symmetries of the candidate partially massless bimetric gravity
  • 2016
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 94:12
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we investigate a particular ghost-free bimetric theory that exhibits the partially massless ( PM) symmetry at quadratic order. At this order the global SO(1,4) symmetry of the theory is enhanced to SO(1,5). We show that this global symmetry becomes inconsistent at cubic order, in agreement with a previous calculation. Furthermore, we find that the PM symmetry of this theory cannot be extended beyond cubic order in the PM field. More importantly, it is shown that the PM symmetry cannot be extended to quartic order in any theory with one massless and one massive spin-2 fields.
  •  
3.
  • Apolo, Luis, et al. (författare)
  • Non-linear partially massless symmetry in an SO(1,5) continuation of conformal gravity
  • 2017
  • Ingår i: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 34:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We construct a non-linear theory of interacting spin-2 fields that is invariant under the partially massless (PM) symmetry to all orders. This theory is based on the SO(1, 5) group, in analogy with the SO(2, 4) formulation of conformal gravity, but has a quadratic spectrum free of ghost instabilities. The action contains a vector field associated with a local SO(2) symmetry which is manifest in the vielbein formulation of the theory. We show that, in a perturbative expansion, the SO(2) symmetry transmutes into the PM transformations of a massive spin-2 field. In this context, the vector field is crucial to circumvent earlier obstructions to an order-by-order construction of PM symmetry. Although the non-linear theory lacks enough first class constraints to remove all helicity-0 modes from the spectrum, the PM transformations survive to all orders. The absence of ghosts and strong coupling effects at the non-linear level are not addressed here.
  •  
4.
  • Barack, Leor, et al. (författare)
  • Black holes, gravitational waves and fundamental physics : a roadmap
  • 2019
  • Ingår i: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 36:14
  • Forskningsöversikt (refereegranskat)abstract
    • The grand challenges of contemporary fundamental physics dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'.
  •  
5.
  • Hassan, S. Fawad, et al. (författare)
  • Analysis of constraints and their algebra in bimetric theory
  • 2018
  • Ingår i: Journal of High Energy Physics (JHEP). - 1126-6708 .- 1029-8479. ; :8
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform a canonical analysis of the bimetric theory in the metric formulation, computing the constraints and their algebra explicitly. In particular, we compute a secondary constraint, that has been argued to exist earlier, and show that it has the correct form to eliminate the ghost. We also identify a set of four first class constraints that generate the algebra of general covariance. The covariance algebra naturally determines a spacetime metric for the theory. However, in bimetric theory, this metric is not unique but depends on how the first class constraints are identified.
  •  
6.
  • Hassan, S. Fawad, et al. (författare)
  • Bimetric gravity from ghost-free massive gravity
  • 2012
  • Ingår i: Journal of High Energy Physics (JHEP). - 1126-6708 .- 1029-8479. ; 1202
  • Tidskriftsartikel (refereegranskat)abstract
    • Generically, non-linear bimetric theories of gravity suffer from the same Boulware-Deser ghost instability as non-linear theories of massive gravity. However, recently proposed theories of massive gravity have been shown to be ghost-free. These theories are formulated with respect to a flat, non-dynamical reference metric. In this work we show that it is possible to give dynamics to the reference metric in such a way that the consistency of the theory is maintained. The result is a non-linear bimetric theory of a massless spin-2 field interacting with a massive spin-2 field that is free of the Boulware-Deser ghost. To our knowledge, this is the first construction of such a ghost-free bimetric theory.
  •  
7.
  • Hassan, S. Fawad, et al. (författare)
  • Brane induced gravity, its ghost and the cosmological constant problem
  • 2011
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :1, s. 020-
  • Tidskriftsartikel (refereegranskat)abstract
    • Brane Induced Gravity is regarded as a promising framework for addressing the cosmological constant problem, but it also suffers from a ghost instability for parameter values that make it phenomenologically viable. We carry out a detailed analysis of codimension > 2 models employing gauge invariant variables in a flat background approximation. It is argued that using instead a curved background sourced by the brane would not resolve the ghost issue, unless a very specific condition is satisfied (if satisfiable at all). As for other properties of the model, from an explicit analysis of the 4-dimensional graviton propagator we extract a mass, a decay width and a momentum dependent modification of the gravitational coupling for the spin 2 mode. In the flat space approximation, the mass of the problematic spin 0 ghost is instrumental in filtering out a brane cosmological constant. The mass replaces a background curvature that would have had the same function. The optical theorem is used to demonstrate the suppression of graviton leakage into the uncompactified bulk. Then, we derive the 4-dimensional effective action for gravity and show that general covariance is spontaneously broken by the bulk-brane setup. This provides a natural realization of the gravitational Higgs mechanism. We also show that the addition of extrinsic curvature dependent terms has no bearing on linearized brane gravity.
  •  
8.
  • Hassan, S. Fawad, et al. (författare)
  • Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity
  • 2012
  • Ingår i: Journal of High Energy Physics (JHEP). - 1126-6708 .- 1029-8479. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • In massive gravity and in bimetric theories of gravity, two constraints are needed to eliminate the two phase-space degrees of freedom of the Boulware-Deser ghost. For recently proposed non-linear theories, a Hamiltonian constraint has been shown to exist and an associated secondary constraint was argued to arise as well. In this paper we explicitly demonstrate the existence of the secondary constraint. Thus the Boulware-Deser ghost is completely absent from these non-linear massive gravity theories and from the corresponding bimetric theories. Equivalently, this proves the existence of classically ghost-free theories of massive spin-2 fields, in both fixed and dynamical gravitational backgrounds.
  •  
9.
  • Hassan, S. Fawad, et al. (författare)
  • Extended Weyl invariance in a bimetric model and partial masslessness
  • 2016
  • Ingår i: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 33:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We revisit a particular ghost-free bimetric model which is related to both partial masslessness (PM) and conformal gravity. Linearly, the model propagates six instead of seven degrees of freedom not only around de Sitter but also around flat spacetime. Nonlinearly, the equations of motion can be recast in the form of expansions in powers of curvatures, and exhibit a remarkable amount of structure. In this form, the equations are shown to be invariant under scalar gauge transformations, at least up to six orders in derivatives, the lowest order term being a Weyl scaling of the metrics. The terms at two-derivative order reproduce the usual PM gauge transformations on de Sitter backgrounds. At the four-derivative order, a potential obstruction that could destroy the symmetry is shown to vanish. This in turn guarantees the gauge invariance to at least six-orders in derivatives. This is equivalent to adding up to ten-derivative corrections to conformal gravity. More generally, we outline a procedure for constructing the gauge transformations order by order as an expansion in derivatives and comment on the validity and limitations of the procedure. We also discuss recent arguments against the existence of a PM gauge symmetry in bimetric theory and show that, at least in their present form, they are evaded by the model considered here. Finally, we argue that a bimetric approach to PM theory is more promising than one based on the existence of a fundamental PM field.
  •  
10.
  • Hassan, S. Fawad, et al. (författare)
  • Ghost free massive gravity with a general reference metric
  • 2012
  • Ingår i: Journal of High Energy Physics (JHEP). - 1126-6708 .- 1029-8479. ; :2, s. 026-
  • Tidskriftsartikel (refereegranskat)abstract
    • Theories of massive gravity inevitably include an auxiliary reference metric. Generically, they also contain an inconsistency known as the Boulware-Deser ghost. Recently, a family of non-linear massive gravity actions, formulated with a flat reference metric, were proposed and shown to be ghost free at the complete non-linear level. In this paper we consider these non-linear massive gravity actions but now formulated with a general reference metric. We extend the proof of the absence of the Boulware-Deser ghost to this case. The analysis is carried out in the ADM formalism at the complete non-linear level. We show that in these models there always exists a Hamiltonian constraint which, with an associated secondary constraint, eliminates the ghost. This result considerably extends the range of known consistent non-linear massive gravity theories. In addition, these theories can also be used to describe a massive spin-2 field in an arbitrary, fixed gravitational background. We also discuss the positivity of the Hamiltonian.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy