SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Haszpra Laszlo) "

Sökning: WFRF:(Haszpra Laszlo)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergamaschi, Peter, et al. (författare)
  • European Obspack compilation of atmospheric carbon dioxide data from ICOS and non-ICOS European stations for the period 1972-2023; : obspack_co2_466_GLOBALVIEWplus_v8.0_2023-04-26
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • This data package contains high accuracy CO2 dry air mole fractions from 58 ICOS and non-ICOS European observatories at in total 132 observation levels, collected by the ICOS Atmosphere Thematic Centre (ATC) and provided by the station contributors. The package is part of the Globalviewplus v8.0 data product, released in 2022 and is intended for use in carbon cycle inverse modeling, model evaluation, and satellite validation studies. Please report errors and send comments regarding this product to the ObsPack originators. Please read carefully the ObsPack Fair Use statement and cite appropriately. This is the sixth release of the GLOBALVIEWplus (GV+) cooperative data product. Please review the release notes for this product at www.esrl.noaa.gov/gmd/ccgg/obspack/release_notes.html. Metadata for this product are available at https://commons.datacite.org/doi.org/10.18160/CEC4-CAGK. Please visit http://www.gml.noaa.gov/ccgg/obspack/ for more information.
  •  
2.
  • Bergamaschi, Peter, et al. (författare)
  • Inverse modelling of European CH4 emissions during 2006–2012 using different inverse models and reassessed atmospheric observations
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 18:2, s. 901-920
  • Tidskriftsartikel (refereegranskat)abstract
    • We present inverse modelling (top down) estimates of European methane (CH4) emissions for 2006–2012 based on a new quality-controlled and harmonised in situ data set from 18 European atmospheric monitoring stations. We applied an ensemble of seven inverse models and performed four inversion experiments, investigating the impact of different sets of stations and the use of a priori information on emissions. The inverse models infer total CH4 emissions of 26.8 (20.2–29.7) Tg CH4 yr−1 (mean, 10th and 90th percentiles from all inversions) for the EU-28 for 2006–2012 from the four inversion experiments. For comparison, total anthropogenic CH4 emissions reported to UNFCCC (bottom up, based on statistical data and emissions factors) amount to only 21.3 Tg CH4 yr−1 (2006) to 18.8 Tg CH4 yr−1 (2012). A potential explanation for the higher range of top-down estimates compared to bottom-up inventories could be the contribution from natural sources, such as peatlands, wetlands, and wet soils. Based on seven different wetland inventories from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP), total wetland emissions of 4.3 (2.3–8.2) Tg CH4 yr−1 from the EU-28 are estimated. The hypothesis of significant natural emissions is supported by the finding that several inverse models yield significant seasonal cycles of derived CH4 emissions with maxima in summer, while anthropogenic CH4 emissions are assumed to have much lower seasonal variability. Taking into account the wetland emissions from the WETCHIMP ensemble, the top-down estimates are broadly consistent with the sum of anthropogenic and natural bottom-up inventories. However, the contribution of natural sources and their regional distribution remain rather uncertain. Furthermore, we investigate potential biases in the inverse models by comparison with regular aircraft profiles at four European sites and with vertical profiles obtained during the Infrastructure for Measurement of the European Carbon Cycle (IMECC) aircraft campaign. We present a novel approach to estimate the biases in the derived emissions, based on the comparison of simulated and measured enhancements of CH4 compared to the background, integrated over the entire boundary layer and over the lower troposphere. The estimated average regional biases range between −40 and 20 % at the aircraft profile sites in France, Hungary and Poland.
  •  
3.
  • Haszpra, Laszlo, et al. (författare)
  • Real-world wintertime CO, N2O, and CO2 emissions of a central European village
  • 2022
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-8548. ; 15:17, s. 5019-5031
  • Tidskriftsartikel (refereegranskat)abstract
    • Although small rural settlements are only minor individual sources of greenhouse gases and air pollution, their high overall occurrence can significantly contribute to the total emissions of a region or country. Emissions from a rural lifestyle may be remarkably different than those of urban and industrialized regions, but nevertheless they have hardly been studied so far. Here, flux measurements at a tall-tower eddy covariance monitoring site and the footprint model FFP are used to determine the real-world wintertime CO, N2O, and CO2 emissions of a small village in western Hungary. The recorded emission densities, dominantly resulting from residential heating, are 3.5, 0.043, and 72 μg m-2 s-1 for CO, N2O, and CO2, respectively. While the measured CO and CO2 emissions are comparable to those calculated using the assumed energy consumption and applying the according emission factors, the nitrous oxide emissions exceed the expected value by a magnitude. This may indicate that the nitrous oxide emissions are significantly underestimated in the emission inventories, and modifications in the methodology of emission calculations are necessary. Using a three-dimensional forward transport model, we further show that, in contrast to the flux measurements, the concentration measurements at the regional background monitoring site are only insignificantly influenced by the emissions of the nearby village.
  •  
4.
  • Yi, Chuixiang, et al. (författare)
  • Climate control of terrestrial carbon exchange across biomes and continents
  • 2010
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy