SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hausammann Loic) "

Sökning: WFRF:(Hausammann Loic)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jung, Minyong, et al. (författare)
  • The AGORA High-resolution Galaxy Simulations Comparison Project. V. Satellite Galaxy Populations in a Cosmological Zoom-in Simulation of a Milky Way-Mass Halo
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X. ; 964:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze and compare the satellite halo populations at z ∼ 2 in the high-resolution cosmological zoom-in simulations of a 1012 M ⊙ target halo (z = 0 mass) carried out on eight widely used astrophysical simulation codes (Art-I, Enzo, Ramses, Changa, Gadget-3, Gear, Arepo-t, and Gizmo) for the AGORA High-resolution Galaxy Simulations Comparison Project. We use slightly different redshift epochs near z = 2 for each code (hereafter “z ∼ 2”) at which the eight simulations are in the same stage in the target halo’s merger history. After identifying the matched pairs of halos between the CosmoRun simulations and the DMO simulations, we discover that each CosmoRun halo tends to be less massive than its DMO counterpart. When we consider only the halos containing stellar particles at z ∼ 2, the number of satellite galaxies is significantly fewer than that of dark matter halos in all participating AGORA simulations and is comparable to the number of present-day satellites near the Milky Way or M31. The so-called “missing satellite problem” is fully resolved across all participating codes simply by implementing the common baryonic physics adopted in AGORA and the stellar feedback prescription commonly used in each code, with sufficient numerical resolution (≲100 proper pc at z = 2). We also compare other properties such as the stellar mass-halo mass relation and the mass-metallicity relation. Our work highlights the value of comparison studies such as AGORA, where outstanding problems in galaxy formation theory are studied simultaneously on multiple numerical platforms.
  •  
2.
  • Schaller, Matthieu, et al. (författare)
  • Swift : a modern highly parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 530:2, s. 2378-2419
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular coupled hydrodynamics, gravity, cosmology, and galaxy-formation code SWIFT. The software package exploits hybrid shared- and distributed-memory task-based parallelism, asynchronous communications, and domain-decomposition algorithms based on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. SWIFT also evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An extensive set of output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe the overall code architecture, summarize the consistency and accuracy tests that were performed, and demonstrate the excellent weak-scaling performance of the code using a representative cosmological hydrodynamical problem with ≈300 billion particles. The code is released to the community alongside extensive documentation for both users and developers, a large selection of example test problems, and a suite of tools to aid in the analysis of large simulations run with SWIFT.
  •  
3.
  • Strawn, Clayton, et al. (författare)
  • The AGORA High-resolution Galaxy Simulations Comparison Project. VI. Similarities and Differences in the Circumgalactic Medium
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X. ; 962:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze the circumgalactic medium (CGM) for eight commonly-used cosmological codes in the AGORA collaboration. The codes are calibrated to use identical initial conditions, cosmology, heating and cooling, and star formation thresholds, but each evolves with its own unique code architecture and stellar feedback implementation. Here, we analyze the results of these simulations in terms of the structure, composition, and phase dynamics of the CGM. We show properties such as metal distribution, ionization levels, and kinematics are effective tracers of the effects of the different code feedback and implementation methods, and as such they can be highly divergent between simulations. This is merely a fiducial set of models, against which we will in the future compare multiple feedback recipes for each code. Nevertheless, we find that the large parameter space these simulations establish can help disentangle the different variables that affect observable quantities in the CGM, e.g., showing that abundances for ions with higher ionization energy are more strongly determined by the simulation’s metallicity, while abundances for ions with lower ionization energy are more strongly determined by the gas density and temperature.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy