SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hausrath E. M.) "

Sökning: WFRF:(Hausrath E. M.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Vaughan, A., et al. (författare)
  • Regolith of the Crater Floor Units, Jezero Crater, Mars : Textures, Composition, and Implications for Provenance
  • 2023
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley and Sons Inc. - 2169-9097 .- 2169-9100. ; 128:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A multi-instrument study of the regolith of Jezero crater floor units by the Perseverance rover has identified three types of regolith: fine-grained, coarse-grained, and mixed-type. Mastcam-Z, Wide Angle Topographic Sensor for Operations and eNgineering, and SuperCam Remote Micro Imager were used to characterize the regolith texture, particle size, and roundedness where possible. Mastcam-Z multispectral and SuperCam laser-induced breakdown spectroscopy data were used to constrain the composition of the regolith types. Fine-grained regolith is found surrounding bedrock and boulders, comprising bedforms, and accumulating on top of rocks in erosional depressions. Spectral and chemical data show it is compositionally consistent with pyroxene and a ferric-oxide phase. Coarse-grained regolith consists of 1–2 mm well-sorted gray grains that are found concentrated around the base of boulders and bedrock, and armoring bedforms. Its chemistry and spectra indicate it is olivine-bearing, and its spatial distribution and roundedness indicate it has been transported, likely by saltation-induced creep. Coarse grains share similarities with the olivine grains observed in the Séítah formation bedrock, making that unit a possible source for these grains. Mixed-type regolith contains fine- and coarse-grained regolith components and larger rock fragments. The rock fragments are texturally and spectrally similar to bedrock within the Máaz and Séítah formations, indicating origins by erosion from those units, although they could also be a lag deposit from erosion of an overlying unit. The fine- and coarse-grained types are compared to their counterparts at other landing sites to inform global, regional, and local inputs to regolith formation within Jezero crater. The regolith characterization presented here informs the regolith sampling efforts underway by Perseverance. © 2023. The Authors.
  •  
3.
  • Hausrath, E. M., et al. (författare)
  • An Examination of Soil Crusts on the Floor of Jezero Crater, Mars
  • 2023
  • Ingår i: Journal of Geophysical Research: Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 128:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Martian soils are critically important for understanding the history of Mars, past potentially habitable environments, returned samples, and future human exploration. This paper examines soil crusts on the floor of Jezero crater encountered during initial phases of the Mars 2020 mission. Soil surface crusts have been observed on Mars at other locations, starting with the two Viking Lander missions. Rover observations show that soil crusts are also common across the floor of Jezero crater, revealed in 45 of 101 locations where rover wheels disturbed the soil surface, 2 out of 7 helicopter flights that crossed the wheel tracks, and 4 of 8 abrasion/drilling sites. Most soils measured by the SuperCam laser-induced breakdown spectroscopy (LIBS) instrument show high hydrogen content at the surface, and fine-grained soils also show a visible/near infrared (VISIR) 1.9 µm H2O absorption feature. The Planetary Instrument for X-ray Lithochemistry (PIXL) and SuperCam observations suggest the presence of salts at the surface of rocks and soils. The correlation of S and Cl contents with H contents in SuperCam LIBS measurements suggests that the salts present are likely hydrated. On the “Naltsos” target, magnesium and sulfur are correlated in PIXL measurements, and Mg is tightly correlated with H at the SuperCam points, suggesting hydrated Mg-sulfates. Mars Environmental Dynamics Analyzer (MEDA) observations indicate possible frost events and potential changes in the hydration of Mg-sulfate salts. Jezero crater soil crusts may therefore form by salts that are hydrated by changes in relative humidity and frost events, cementing the soil surface together.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy