SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hayde M) "

Sökning: WFRF:(Hayde M)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Dean, Justin M, et al. (författare)
  • Delayed cortical impairment following lipopolysaccharide exposure in preterm fetal sheep.
  • 2011
  • Ingår i: Annals of neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 70:5, s. 846-856
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Preterm infants exhibit chronic deficits in white matter (WM) and cortical maturation. Although fetal infection/inflammation may contribute to WM pathology, the factors contributing to cortical changes are largely unknown. We examined the effect of fetal lipopolysaccharide (LPS) exposure on WM and cortical development as assessed by magnetic resonance imaging (MRI), electroencephalography (EEG), and histopathology in fetal sheep at preterm human equivalent age. METHODS: LPS was administered to fetal sheep at 102.5 ± 0.5 days of gestation. Continuous biophysical recordings were analyzed for 10 days after LPS. At postmortem, measurement of cerebral WM and cortical tissue volumes was achieved by stereological techniques. Specific effects of LPS on MRI-assessed T(1) -weighted and T(2) -weighted images, and immunohistochemical expression of oligodendrocytes, proliferating cells, cortical NeuN-positive and Nurr1-positive neurons (subplate marker), and cell death mechanisms were examined. RESULTS: We observed reductions in WM (∼21%; LPS, 1.19 ± 0.04 vs control, 1.51 ± 0.07cm(3) ; p < 0.001) and cortical (∼18%; LPS, 2.34 ± 0.10 vs control, 2.85 ± 0.07cm(3) ; p < 0.001) volumes, associated with overt and diffuse WM injury, T(1) -/T(2) -weighted signal alterations, and reduced numbers of WM oligodendrocytes (LPS, 485 ± 31 vs control, 699 ± 69 cells/mm(2) ; p = 0.0189) and NeuN-positive (LPS, 421 ± 71 vs control 718 ± 92 cells/mm(2) ; p = 0.04) and Nurr1-positive (control, 2.5 ± 0.6 vs LPS, 0.6 ± 0.1 cells/mm(2) ; p = 0.007) cortical neurons after LPS. Moreover, there was loss of the normal maturational increase in cortical EEG amplitude, which correlated with reduced cortical volumes. INTERPRETATION: Fetal exposure to LPS prior to myelination onset can impair both white matter and cortical development in a preclinical large animal model, supporting a role for maternal/fetal infection in the pathogenesis of preterm brain injury. ANN NEUROL 2011.
  •  
3.
  • Keller, Matthias, et al. (författare)
  • Inflammatory-induced hibernation in the fetus:priming of fetal sheep metabolism correlates with developmental brain injury.
  • 2011
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Prenatal inflammation is considered an important factor contributing to preterm birth and neonatal mortality and morbidity. The impact of prenatal inflammation on fetal bioenergetic status and the correlation of specific metabolites to inflammatory-induced developmental brain injury are unknown. We used a global metabolomics approach to examine plasma metabolites differentially regulated by intrauterine inflammation. Preterm-equivalent sheep fetuses were randomized to i.v. bolus infusion of either saline-vehicle or LPS. Blood samples were collected at baseline 2 h, 6 h and daily up to 10 days for metabolite quantification. Animals were killed at 10 days after LPS injection, and brain injury was assessed by histopathology. We detected both acute and delayed effects of LPS on fetal metabolism, with a long-term down-regulation of fetal energy metabolism. Within the first 3 days after LPS, 121 metabolites were up-regulated or down-regulated. A transient phase (4–6 days), in which metabolite levels recovered to baseline, was followed by a second phase marked by an opposing down-regulation of energy metabolites, increased pO2 and increased markers of inflammation and ADMA. The characteristics of the metabolite response to LPS in these two phases, defined as 2 h to 2 days and at 6–9 days, respectively, were strongly correlated with white and grey matter volumes at 10 days recovery. Based on these results we propose a novel concept of inflammatory-induced hibernation of the fetus. Inflammatory priming of fetal metabolism correlated with measures of brain injury, suggesting potential for future biomarker research and the identification of therapeutic targets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy