SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Haynes Shannon J.) "

Sökning: WFRF:(Haynes Shannon J.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Ade, Peter, et al. (författare)
  • The Simons Observatory : science goals and forecasts
  • 2019
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial con figuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping approximate to 10% of the sky to a white noise level of 2 mu K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of sigma(r) = 0.003. The large aperture telescope will map approximate to 40% of the sky at arcminute angular resolution to an expected white noise level of 6 mu K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
  •  
3.
  • Jimenez Berrocoso, Alvaro, et al. (författare)
  • The Lindi Formation (upper Albian-Coniacian) and Tanzania Drilling Project Sites 36-40 (Lower Cretaceous to Paleogene) : Lithostratigraphy, biostratigraphy and chemostratigraphy
  • 2015
  • Ingår i: Journal of African earth sciences. - : Elsevier BV. - 1464-343X. ; 101, s. 282-308
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2009 Tanzania Drilling Project (TDP) expedition to southeastern Tanzania cored a total of 572.3 m of sediments at six new mid-Cretaceous to mid-Paleocene boreholes (TDP Sites 36, 37, 38, 39, 40A, 40B). Added to the sites drilled in 2007 and 2008, the new boreholes confirm the common excellent preservation of planktonic and benthic foraminifera and calcareous nannofossils from core samples that will be used for biostratigraphy, evolutionary studies, paleoceanography and climatic reconstructions from the Tanzanian margin, with implications elsewhere. The new sites verify the presence of a relatively expanded Upper Cretaceous succession in the region that has allowed a new stratigraphic unit, named here as the Lindi Formation (Fm), to be formally defined. The Lindi Fm (upper Albian to Coniacian), extending similar to 120 km between Kilwa and Lindi, comprises a 335-m-thick, outer-shelf to upper-slope unit, consisting of dark gray claystone and siltstone interbeds, common finely-laminated intervals, minor cm-thick sandstones and up to 2.6% organic carbon in the Turonian. A subsurface, composite stratotype section is proposed for the Lindi Fm, with a gradational top boundary with the overlying Nangurukuru Fm (Santonian to Maastrichtian) and a sharp bottom contact with underlying upper Albian sandstones. The section cored at TDP Sites 36 and 38 belongs to the Lindi Fm and are of lower to middle Turonian age (planktonic foraminifera Whiteinella archaeocretacea to Helvetoglobotruncana helvetica Zones and nannofossils subzones UC6b +/- UC7). The lower portion of TDP Site 39 (uppermost part of the Lindi Fm) is assigned to the lower to upper Coniacian (planktonic foraminifera Dicarinella concavata Zone and nannofossils zone UC 10), while the remaining part of this site is attributed to the Coniacian-Santonian transition and younger Santonian (planktonic foraminifera D. asymetrica Zone and upper part of nannofossils zone UC10). TDP Site 37 recovered relatively expanded (150 m thick), monotonous calcareous claystones from the lower to upper Maastrichtian (planktonic foraminifera Pseudoguembelina palpebra to Abathomphalus mayaroensis Zones and nannofossils zones UC19 to UC20a(TP)) that were separated by a hiatus and/or a faulted contact from overlying brecciated carbonates of the Selandian (middle Paleocene: PF Zone P3 and nannofossil zone NP5). The lower portion of TDP Sites 40A and 40B recovered sandstones and conglomerates barren of microfossils. Their overlying parts were assigned to incomplete sections of the nannofossil zones NC6A to NC8 (uppermost Barremian to lower Albian). Benthic foraminiferal assemblages allowed the Barremian to lower Aptian to be identified in TDP Sites 40A and 40B, while the upper Aptian to middle Albian (Hedbergella trocoidea to Ticinella primula Zones) were assigned using planktonic foraminifera. Cores recovered at TDP 39 (Coniacian-Santonian) and at TDP Sites 40A and 40B (Barremian-middle Albian) represent the first time that these two intervals have been continuously cored and publicly documented in Tanzania. Bulk sediment isotope records generated for the new sites show lower delta O-18(carb) values in the Turonian and Santonian (similar to-3.5 parts per thousand to -5 parts per thousand) than in the Maastrichtian (similar to-3 parts per thousand), a situation consistent with extreme global warmth in the older intervals and cooling toward the end of the Cretaceous. Also, similar to Turonian sites from previous TDP expeditions, a negative delta C-13(org) excursion was detected across the W. archaeocretacea-H. helvetica boundary of TDP Site 36 (close to, but above, the Cenomanian-Turonian boundary). This excursion probably responded to local processes in the region, but it is unknown whether they were related to the recovery phase from Ocean Anoxic Event 2.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy