SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(He Hongming) "

Sökning: WFRF:(He Hongming)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Abdel-Hameed, Amal Mohamed, et al. (författare)
  • Winter Potato Water Footprint Response to Climate Change in Egypt
  • 2022
  • Ingår i: Atmosphere. - : MDPI. - 2073-4433. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The limited amount of freshwater is the most important challenge facing Egypt due to increasing population and climate change. The objective of this study was to investigate how climatic change affects the winter potato water footprint at the Nile Delta covering 10 governorates from 1990 to 2016. Winter potato evapotranspiration (ETC) was calculated based on daily climate variables of minimum temperature, maximum temperature, wind speed and relative humidity during the growing season (October–February). The Mann–Kendall test was applied to determine the trend of climatic variables, crop evapotranspiration and water footprint. The results showed that the highest precipitation values were registered in the northwest governorates (Alexandria followed by Kafr El-Sheikh). The potato water footprint decreased from 170 m3 ton−1 in 1990 to 120 m3 ton−1 in 2016. The blue-water footprint contributed more than 75% of the total; the remainder came from the green-water footprint. The findings from this research can help government and policy makers better understand the impact of climate change on potato crop yield and to enhance sustainable water management in Egypt’s major crop-producing regions to alleviate water scarcity.
  •  
3.
  • Mokhtar, Ali, et al. (författare)
  • Estimation of SPEI Meteorological Drought using Machine Learning Algorithms
  • 2021
  • Ingår i: IEEE Access. - : IEEE. - 2169-3536. ; 9, s. 65503-65523
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate estimation of drought events is vital for the mitigation of their adverse consequences on water resources, agriculture and ecosystems. Machine learning algorithms are promising methods for drought prediction as they require less time, minimal inputs, and are relatively less complex than dynamic or physical models. In this study, a combination of machine learning with the Standardized Precipitation Evapotranspiration Index (SPEI) is proposed for analysis of drought within a representative case study in the Tibetan Plateau, China, for the period of 1980-2019. Two timescales of 3 months (SPEI-3) and 6 months (SPEI-6) aggregation were considered. Four machine learning models of Random Forest (RF), the Extreme Gradient Boost (XGB), the Convolutional neural network (CNN) and the Long-term short memory (LSTM) were developed for the estimation of the SPEIs. Seven scenarios of various combinations of climate variables as input were adopted to build the models. The best models were XGB with scenario 5 (precipitation, average temperature, minimum temperature, maximum temperature, wind speed and relative humidity) and RF with scenario 6 (precipitation, average temperature, minimum temperature, maximum temperature, wind speed, relative humidity and sunshine) for estimating SPEI-3. LSTM with scenario 4 (precipitation, average temperature, minimum temperature, maximum temperature, wind speed) was relatively better for SPEI-6 estimation. The best model for SPEI-6 was XGB with scenario 5 and RF with scenario 7 (all input climate variables, i.e., scenario 6 + solar radiation). Based on the NSE index, the performances of XGB and RF models are classified as good fits for scenarios 4 to 7 for both timescales. The developed models produced satisfactory results and they could be used as a rapid tool for decision making by water-managers.
  •  
4.
  • Mokhtar, Ali, et al. (författare)
  • Prediction of Irrigation Water Requirements for Green Beans-Based Machine Learning Algorithm Models in Arid Region
  • 2023
  • Ingår i: Water resources management. - : Springer. - 0920-4741 .- 1573-1650. ; 37, s. 1557-1580
  • Tidskriftsartikel (refereegranskat)abstract
    • Water scarcity is the most obstacle faced by irrigation water requirements, likewise, limited available meteorological data to calculate reference evapotranspiration. Consequently, the focal aims of the investigation are to assess the potential of machine learning models in forecasting irrigation water requirements (IWR) of snap beans by evolving multi-scenarios of inputs parameters to figure out the impact of meteorological, crop, and soil parameters on IWR. Six models were applied, support vector regressor (SVR), random forest (RF), deep neural networks (DNN), convolutional neural networks (CNN), long short-term memory (LSTM), and Hybrid CNN-LSTM. Ten variables including maximum and minimum temperature, Relative humidity, wind speed, precipitation, root depth, basal crop coefficient, soil evaporation, a fraction of surface wetted and, exposed and soil wetted fraction were used as the input data for models with their combination, 8 input scenarios were designed. Overall models, the best scenario was scenario 4 (relative humidity, wind speed, basal crop coefficient, soil evaporation), however, the best scenario for DNN and RF model was scenario 7 (root depth, basal crop coefficient, soil evaporation, fraction of surface wetted, exposed and soil wetted fraction). While the weakest one was the group of climatic factors in scenario 6 (maximum temperature, minimum temperature, relative humidity, wind speed, and precipitation). Among the models, the hybrid LTSM & CNN was the most accurate and the SVR model had the lowest estimation accuracy. The outcomes of this research work could set up a modeling strategy that would set in motion the improvement of efforts to identify the shortages in IWR forecasting, which sequentially may support alleviation strategies such as policies for sustainable water use and water resources management. The current approach was promising and has research value for other similar regions. 
  •  
5.
  • Mokhtar, Ali, et al. (författare)
  • Using Machine Learning Models to Predict Hydroponically Grown Lettuce Yield
  • 2022
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Prediction of crop yield is an essential task for maximizing the global food supply, particularly in developing countries. This study investigated lettuce yield (fresh weight) prediction using four machine learning (ML) models, namely, support vector regressor (SVR), extreme gradient boosting (XGB), random forest (RF), and deep neural network (DNN). It was cultivated in three hydroponics systems (i.e., suspended nutrient film technique system, pyramidal aeroponic system, and tower aeroponic system), which interacted with three different magnetic unit strengths under a controlled greenhouse environment during the growing season in 2018 and 2019. Three scenarios consisting of the combinations of input variables (i.e., leaf number, water consumption, dry weight, stem length, and stem diameter) were assessed. The XGB model with scenario 3 (all input variables) yielded the lowest root mean square error (RMSE) of 8.88 g followed by SVR with the same scenario that achieved 9.55 g, and the highest result was by RF with scenario 1 (i.e., leaf number and water consumption) that achieved 12.89 g. All model scenarios having Scatter Index (SI) (i.e., RMSE divided by the average values of the observed yield) values less than 0.1 were classified as excellent in predicting fresh lettuce yield. Based on all of the performance statistics, the two best models were SVR with scenario 3 and DNN with scenario 2 (i.e., leaf number, water consumption, and dry weight). However, DNN with scenario 2 requiring less input variables is preferred. The potential of the DNN model to predict fresh lettuce yield is promising, and it can be applied on a large scale as a rapid tool for decision-makers to manage crop yield.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy