SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heber B.) "

Sökning: WFRF:(Heber B.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Heber, S, et al. (författare)
  • A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation
  • 2022
  • Ingår i: Frontiers in cellular and infection microbiology. - : Frontiers Media SA. - 2235-2988. ; 11, s. 795026-
  • Tidskriftsartikel (refereegranskat)abstract
    • To develop and validate a prognostic model for in-hospital mortality after four days based on age, fever at admission and five haematological parameters routinely measured in hospitalized Covid-19 patients during the first four days after admission.MethodsHaematological parameters measured during the first 4 days after admission were subjected to a linear mixed model to obtain patient-specific intercepts and slopes for each parameter. A prediction model was built using logistic regression with variable selection and shrinkage factor estimation supported by bootstrapping. Model development was based on 481 survivors and 97 non-survivors, hospitalized before the occurrence of mutations. Internal validation was done by 10-fold cross-validation. The model was temporally-externally validated in 299 survivors and 42 non-survivors hospitalized when the Alpha variant (B.1.1.7) was prevalent.ResultsThe final model included age, fever on admission as well as the slope or intercept of lactate dehydrogenase, platelet count, C-reactive protein, and creatinine. Tenfold cross validation resulted in a mean area under the receiver operating characteristic curve (AUROC) of 0.92, a mean calibration slope of 1.0023 and a Brier score of 0.076. At temporal-external validation, application of the previously developed model showed an AUROC of 0.88, a calibration slope of 0.95 and a Brier score of 0.073. Regarding the relative importance of the variables, the (apparent) variation in mortality explained by the six variables deduced from the haematological parameters measured during the first four days is higher (explained variation 0.295) than that of age (0.210).ConclusionsThe presented model requires only variables routinely acquired in hospitals, which allows immediate and wide-spread use as a decision support for earlier discharge of low-risk patients to reduce the burden on the health care system.Clinical Trial RegistrationAustrian Coronavirus Adaptive Clinical Trial (ACOVACT); ClinicalTrials.gov, identifier NCT04351724.
  •  
4.
  • De Simone, N., et al. (författare)
  • Latitudinal and radial gradients of galactic cosmic ray protons in the inner heliosphere - PAMELA and Ulysses observations
  • 2011
  • Ingår i: Astrophysics and Space Sciences Transactions (ASTRA). - : Copernicus GmbH. - 1810-6528 .- 1810-6536. ; 7:3, s. 425-434
  • Tidskriftsartikel (refereegranskat)abstract
    • Ulysses, launched on 6 October 1990, was placed in an elliptical, high inclined (80.2°) orbit around the Sun, and was switched off in June 2009. It has been the only spacecraft exploring high-latitude regions of the inner heliosphere. The Kiel Electron Telescope (KET) aboard Ulysses measures electrons from 3 MeV to a few GeV and protons and helium in the energy range from 6 MeV/nucleon to above 2 GeV/nucleon. The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) space borne experiment was launched on 15 June 2006 and is continuously collecting data since then. The apparatus measures electrons, positrons, protons, anti-protons and heavier nuclei from about 100 MeV to several hundreds of GeV. Thus the combination of Ulysses and PAMELA measurements is ideally suited to determine the spatial gradients during the extended minimum of solar cycle 23. For protons in the rigidity interval 1.6-1.8 GV we find a radial gradient of 2.7%/AU and a latitudinal gradient of -0.024%/degree. Although the latitudinal gradient is as expected negative, its value is much smaller than predicted by current particle propagation models. This result is of relevance for the study of propagation parameters in the inner heliosphere.
  •  
5.
  • Dumbovic, M., et al. (författare)
  • A new method of measuring Forbush decreases
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Forbush decreases (FDs) are short-term depressions in the galactic cosmic ray (GCR) flux and one of the common signatures of coronal mass ejections (CMEs) in the heliosphere. They often show a two-step profile, the second one associated with the CME's magnetic structure. This second step can be described by the recently developed analytical FD model for flux ropes (FRs) - ForbMod.Aims: The aim of this study is to utilise ForbMod to develop a best-fit procedure to be applied on FR-related FDs as a convenient measurement tool. Our motivation is to develop a best-fit procedure that can be applied to a data series from an arbitrary detector. Thus, the basic procedure would facilitate measurement estimation of the magnitude of the FR-related FD, with the possibility of being adapted for the energy response of a specific detector for a more advanced analysis.Methods: The non-linear fitting was performed by calculating all possible ForbMod curves constrained within the FR borders to the designated dataset and minimising the mean square error (MSE). In order to evaluate the performance of the ForbMod best-fit procedure, we used synthetic measurements produced by calculating the theoretical ForbMod curve for a specific example CME and then applying various effects to the data to mimic the imperfection of the real measurements. We also tested the ForbMod best-fit function on the real data, measured by detector F of the SOHO/EPHIN instrument on a sample containing 30 events, all of which have a distinct FD corresponding to the magnetic obstacle. The extraction of FD profiles (from the onset to the end) was performed manually by an observer, whereby we applied two different versions of border selection and assigned a quality index to each event.Results: We do not find notable differences between events marked by a different quality index. For events with a selection of two different borders, we find that the best fit applied on extended interplanetary coronal mass ejection (ICME) structure borders results in a slightly larger MSE and differences compared to the traditional method due to a larger scatter of the data points. We find that the best-fit results can visually be categorised into six different FD profile types. Although some profiles do not show a visually pleasing FD, the ForbMod best-fit function still manages to find a solution with a relatively small MSE.Conclusions: Overall, we find that the ForbMod best-fit procedure performs similar to the traditional algorithm-based observational method, but with slightly smaller values for the FD amplitude, as it's taking into account the noise in the data. Furthermore, we find that the best-fit procedure has an advantage compared to the traditional method as it can estimate the FD amplitude even when there is a data gap at the onset of the FD.
  •  
6.
  • Schönhense, G., et al. (författare)
  • Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens
  • 2021
  • Ingår i: Review of Scientific Instruments. - : American Institute of Physics (AIP). - 0034-6748 .- 1089-7623. ; 92:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of time-resolved photoemission experiments at fs-pulsed photon sources is ultimately limited by the e-e Coulomb interaction, downgrading energy and momentum resolution. Here, we present an approach to effectively suppress space-charge artifacts in momentum microscopes and photoemission microscopes. A retarding electrostatic field generated by a special objective lens repels slow electrons, retaining the k-image of the fast photoelectrons. The suppression of space-charge effects scales with the ratio of the photoelectron velocities of fast and slow electrons. Fields in the range from -20 to -1100 V/mm for E-kin = 100 eV to 4 keV direct secondaries and pump-induced slow electrons back to the sample surface. Ray tracing simulations reveal that this happens within the first 40 to 3 mu m above the sample surface for E-kin = 100 eV to 4 keV. An optimized front-lens design allows switching between the conventional accelerating and the new retarding mode. Time-resolved experiments at E-kin = 107 eV using fs extreme ultraviolet probe pulses from the free-electron laser FLASH reveal that the width of the Fermi edge increases by just 30 meV at an incident pump fluence of 22 mJ/cm(2) (retarding field -21 V/mm). For an accelerating field of +2 kV/mm and a pump fluence of only 5 mJ/cm(2), it increases by 0.5 eV (pump wavelength 1030 nm). At the given conditions, the suppression mode permits increasing the slow-electron yield by three to four orders of magnitude. The feasibility of the method at high energies is demonstrated without a pump beam at E-kin = 3830 eV using hard x rays from the storage ring PETRA III. The approach opens up a previously inaccessible regime of pump fluences for photoemission experiments.
  •  
7.
  • Herbst, K., et al. (författare)
  • The new local interstellar spectra and their influence on the production rates of the cosmogenic radionuclides 10Be and 14C
  • 2017
  • Ingår i: Journal of Geophysical Research: Space Physics. - 2169-9380. ; 122:1, s. 23-34
  • Tidskriftsartikel (refereegranskat)abstract
    • With Voyager1 crossing the outer boundary of our solar system at the end of 2012, for the first time in the instrumental era an unmodulated local interstellar spectrum (LIS) at galactic particle energies below ~500 MeV has been measured. On the basis of these as well as Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) and Alpha Magnetic Spectrometer (AMS02) measurements, most recently, three new LIS models have been proposed in the literature. In this study we compare the newest LIS models to previously most often used ones. Thereby, we investigate and discuss the influence of these LIS models on the terrestrial production rates of the cosmogenic radionuclides 10Be and 14C, which are produced due to the interaction of galactic and solar cosmic rays with atmospheric constituents. After being transported within the atmosphere they are preserved in natural archives such as, e.g., ice sheets or tree rings, forming a unique tool to study the solar modulation of thousands of years back in time. To parameterize the heliospheric modulation we apply the force-field approximation for the individual LIS models from which LIS-dependent solar modulation parameter (ϕ) values are derived. Furthermore, we present updated sets of linear regression functions containing the opportunity to convert the LIS-dependent ϕ values between the investigated LIS models. The results are then applied to a long-term reconstruction of the solar modulation parameter.
  •  
8.
  • Kollhoff, A., et al. (författare)
  • The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (≲1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near-Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and an extreme ultraviolet (EUV) wave as well as a type II radio burst and multiple type III radio bursts.Aims. We present multi-spacecraft particle observations and place them in context with source observations from remote sensing instruments and discuss how such observations may further our understanding of particle acceleration and transport in this widespread event.Methods. Velocity dispersion analysis (VDA) and time shift analysis (TSA) were used to infer the particle release times at the Sun. Solar wind plasma and magnetic field measurements were examined to identify structures that influence the properties of the energetic particles such as their intensity. Pitch angle distributions and first-order anisotropies were analyzed in order to characterize the particle propagation in the interplanetary medium.Results. We find that during the 2020 November 29 SEP event, particles spread over more than 230° in longitude close to 1 AU. The particle onset delays observed at the different spacecraft are larger as the flare–footpoint angle increases and are consistent with those from previous STEREO observations. Comparing the timing when the EUV wave intersects the estimated magnetic footpoints of each spacecraft with particle release times from TSA and VDA, we conclude that a simple scenario where the particle release is only determined by the EUV wave propagation is unlikely for this event. Observations of anisotropic particle distributions at SolO, Wind, and STEREO-A do not rule out that particles are injected over a wide longitudinal range close to the Sun. However, the low values of the first-order anisotropy observed by near-Earth spacecraft suggest that diffusive propagation processes are likely involved.
  •  
9.
  • Matthia, D., et al. (författare)
  • Temporal and spatial evolution of the solar energetic particle event on 20 January 2005 and resulting radiation doses in aviation
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114:8, s. A08104 (art no)-
  • Tidskriftsartikel (refereegranskat)abstract
    • The solar energetic particle event on 20 January 2005 was one of the largest ground level events ever observed. Neutron monitor stations in the Antarctic recorded count rate increases of several thousand percent caused by secondary energetic particles, and it took more than 36 h to return to background level. Such huge increases in high energetic solar cosmic radiation on the ground are obviously accompanied by considerable changes in the radiation environment at aviation altitudes. Measurements of 28 neutron monitor stations were used in this work to numerically approximate the primary solar proton spectra during the first 12 h of the event by minimizing the differences between measurements and the results of Monte-Carlo calculated count rate increases. The primary spectrum of solar energetic protons was approximated by a power law in rigidity and a linear angular distribution. The incoming direction of the solar energetic particles was determined and compared to the interplanetary magnetic field direction during the event. The effects on the radiation exposure at altitudes of about 12 km during that time were estimated to range from none at low latitudes up to almost 2 mSv/h for a very short time in the Antarctic region and about 0.1 mSv/h at high latitudes on the Northern Hemisphere. After 12 h, dose rates were still increased by 50% at latitudes above 60 degrees whereas no increases at all occurred at latitudes below 40 degrees during the whole event.
  •  
10.
  • Matthiä, Daniel, et al. (författare)
  • The Ground Level Event 70 on December 13th, 2006 and Related Effective Doses at Aviation Altitudes
  • 2009
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 0144-8420 .- 1742-3406. ; 136:4, s. 304-310
  • Tidskriftsartikel (refereegranskat)abstract
    • The 70th ground level event in the records of the Neutron Monitor network occurred on 13 December 2006 reaching a maximum count rate increase at the Oulu station of more than 90% during the 5 min interval 3.05-3.10 UTC. Thereafter, count rates gradually decreased registering increases of a few per cent above the galactic cosmic ray background after a few hours. The primary proton spectrum during the first 6 h after the onset of the event is characterised in this work by fitting the energy and angular distribution by a power law in rigidity and a linear dependence in the pitch angle using a minimisation technique. The results were obtained by analysing the data from 28 Neutron Monitor stations. At very high northern and southern latitudes, the effective dose rates were estimated to reach values of 25-30 mu Sv h(-1) at atmospheric depth of 200 g cm(-2) during the maximum of the event. The increase in effective dose during north atlantic and polar flights was estimated to be in the order of 20 %.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy