SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heber S) "

Sökning: WFRF:(Heber S)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kollhoff, A., et al. (författare)
  • The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (≲1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near-Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and an extreme ultraviolet (EUV) wave as well as a type II radio burst and multiple type III radio bursts.Aims. We present multi-spacecraft particle observations and place them in context with source observations from remote sensing instruments and discuss how such observations may further our understanding of particle acceleration and transport in this widespread event.Methods. Velocity dispersion analysis (VDA) and time shift analysis (TSA) were used to infer the particle release times at the Sun. Solar wind plasma and magnetic field measurements were examined to identify structures that influence the properties of the energetic particles such as their intensity. Pitch angle distributions and first-order anisotropies were analyzed in order to characterize the particle propagation in the interplanetary medium.Results. We find that during the 2020 November 29 SEP event, particles spread over more than 230° in longitude close to 1 AU. The particle onset delays observed at the different spacecraft are larger as the flare–footpoint angle increases and are consistent with those from previous STEREO observations. Comparing the timing when the EUV wave intersects the estimated magnetic footpoints of each spacecraft with particle release times from TSA and VDA, we conclude that a simple scenario where the particle release is only determined by the EUV wave propagation is unlikely for this event. Observations of anisotropic particle distributions at SolO, Wind, and STEREO-A do not rule out that particles are injected over a wide longitudinal range close to the Sun. However, the low values of the first-order anisotropy observed by near-Earth spacecraft suggest that diffusive propagation processes are likely involved.
  •  
2.
  • De Simone, N., et al. (författare)
  • Latitudinal and radial gradients of galactic cosmic ray protons in the inner heliosphere - PAMELA and Ulysses observations
  • 2011
  • Ingår i: Astrophysics and Space Sciences Transactions (ASTRA). - : Copernicus GmbH. - 1810-6528 .- 1810-6536. ; 7:3, s. 425-434
  • Tidskriftsartikel (refereegranskat)abstract
    • Ulysses, launched on 6 October 1990, was placed in an elliptical, high inclined (80.2°) orbit around the Sun, and was switched off in June 2009. It has been the only spacecraft exploring high-latitude regions of the inner heliosphere. The Kiel Electron Telescope (KET) aboard Ulysses measures electrons from 3 MeV to a few GeV and protons and helium in the energy range from 6 MeV/nucleon to above 2 GeV/nucleon. The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) space borne experiment was launched on 15 June 2006 and is continuously collecting data since then. The apparatus measures electrons, positrons, protons, anti-protons and heavier nuclei from about 100 MeV to several hundreds of GeV. Thus the combination of Ulysses and PAMELA measurements is ideally suited to determine the spatial gradients during the extended minimum of solar cycle 23. For protons in the rigidity interval 1.6-1.8 GV we find a radial gradient of 2.7%/AU and a latitudinal gradient of -0.024%/degree. Although the latitudinal gradient is as expected negative, its value is much smaller than predicted by current particle propagation models. This result is of relevance for the study of propagation parameters in the inner heliosphere.
  •  
3.
  • Schönhense, G., et al. (författare)
  • Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens
  • 2021
  • Ingår i: Review of Scientific Instruments. - : American Institute of Physics (AIP). - 0034-6748 .- 1089-7623. ; 92:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of time-resolved photoemission experiments at fs-pulsed photon sources is ultimately limited by the e-e Coulomb interaction, downgrading energy and momentum resolution. Here, we present an approach to effectively suppress space-charge artifacts in momentum microscopes and photoemission microscopes. A retarding electrostatic field generated by a special objective lens repels slow electrons, retaining the k-image of the fast photoelectrons. The suppression of space-charge effects scales with the ratio of the photoelectron velocities of fast and slow electrons. Fields in the range from -20 to -1100 V/mm for E-kin = 100 eV to 4 keV direct secondaries and pump-induced slow electrons back to the sample surface. Ray tracing simulations reveal that this happens within the first 40 to 3 mu m above the sample surface for E-kin = 100 eV to 4 keV. An optimized front-lens design allows switching between the conventional accelerating and the new retarding mode. Time-resolved experiments at E-kin = 107 eV using fs extreme ultraviolet probe pulses from the free-electron laser FLASH reveal that the width of the Fermi edge increases by just 30 meV at an incident pump fluence of 22 mJ/cm(2) (retarding field -21 V/mm). For an accelerating field of +2 kV/mm and a pump fluence of only 5 mJ/cm(2), it increases by 0.5 eV (pump wavelength 1030 nm). At the given conditions, the suppression mode permits increasing the slow-electron yield by three to four orders of magnitude. The feasibility of the method at high energies is demonstrated without a pump beam at E-kin = 3830 eV using hard x rays from the storage ring PETRA III. The approach opens up a previously inaccessible regime of pump fluences for photoemission experiments.
  •  
4.
  • Kupfer, T., et al. (författare)
  • The OmegaWhite Survey for Short-period Variable Stars. V. Discovery of an Ultracompact Hot Subdwarf Binary with a Compact Companion in a 44-minute Orbit
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 851:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of the ultracompact hot subdwarf (sdOB) binary OW J074106.0-294811.0 with an orbital period of P-orb = 44.66279 +/- 1.16 x 10(-4) minutes, making it the most compact hot subdwarf binary known. Spectroscopic observations using the VLT, Gemini and Keck telescopes revealed a He-sdOB primary with an intermediate helium abundance, T-eff = 39 400 +/- 500 K and log g = 5.74 +/- 0.09. High signal-to-noise ratio light curves show strong ellipsoidal modulation resulting in a derived sdOB mass M-sdOB= 0.23 +/- 0.12 M-circle dot with a WD companion (M-WD = 0.72 +/- 0.17 M-circle dot). The mass ratio was found to be q = M-sdOB/M-WD = 0.32 +/- 0.10. The derived mass for the He-sdOB is inconsistent with the canonical mass for hot subdwarfs of approximate to 0.47 M-circle dot. To put constraints on the structure and evolutionary history of the sdOB star we compared the derived T-eff, log g, and sdOB mass to evolutionary tracks of helium stars and helium white dwarfs calculated with Modules for Experiments in Stellar Astrophysics (MESA). We find that the best-fitting model is a helium white dwarf with a mass of 0.320 M-circle dot, which left the common envelope approximate to 1.1 Myr ago, which is consistent with the observations. As a helium white dwarf with a massive white dwarf companion, the object will reach contact in 17.6 Myr at an orbital period of 5 minutes. Depending on the spin-orbit synchronization timescale the object will either merge to form an R CrB star or end up as a stably accreting AM CVn-type system with a helium white dwarf donor.
  •  
5.
  • Zettergren, Henning, et al. (författare)
  • Roadmap on dynamics of molecules and clusters in the gas phase
  • 2021
  • Ingår i: European Physical Journal D. - : Springer Science and Business Media LLC. - 1434-6060 .- 1434-6079. ; 75:5
  • Tidskriftsartikel (refereegranskat)abstract
    • This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty order of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity from the smallest (diatomic) molecules to clusters and nanoparticles. Combining some of these techniques opens up new avenues to unravel hitherto unexplored reaction pathways and mechanisms, and to establish their significance in, e.g. radiotherapy and radiation damage on the nanoscale, astrophysics, astrochemistry and atmospheric science.
  •  
6.
  •  
7.
  •  
8.
  • Heber, S, et al. (författare)
  • A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation
  • 2022
  • Ingår i: Frontiers in cellular and infection microbiology. - : Frontiers Media SA. - 2235-2988. ; 11, s. 795026-
  • Tidskriftsartikel (refereegranskat)abstract
    • To develop and validate a prognostic model for in-hospital mortality after four days based on age, fever at admission and five haematological parameters routinely measured in hospitalized Covid-19 patients during the first four days after admission.MethodsHaematological parameters measured during the first 4 days after admission were subjected to a linear mixed model to obtain patient-specific intercepts and slopes for each parameter. A prediction model was built using logistic regression with variable selection and shrinkage factor estimation supported by bootstrapping. Model development was based on 481 survivors and 97 non-survivors, hospitalized before the occurrence of mutations. Internal validation was done by 10-fold cross-validation. The model was temporally-externally validated in 299 survivors and 42 non-survivors hospitalized when the Alpha variant (B.1.1.7) was prevalent.ResultsThe final model included age, fever on admission as well as the slope or intercept of lactate dehydrogenase, platelet count, C-reactive protein, and creatinine. Tenfold cross validation resulted in a mean area under the receiver operating characteristic curve (AUROC) of 0.92, a mean calibration slope of 1.0023 and a Brier score of 0.076. At temporal-external validation, application of the previously developed model showed an AUROC of 0.88, a calibration slope of 0.95 and a Brier score of 0.073. Regarding the relative importance of the variables, the (apparent) variation in mortality explained by the six variables deduced from the haematological parameters measured during the first four days is higher (explained variation 0.295) than that of age (0.210).ConclusionsThe presented model requires only variables routinely acquired in hospitals, which allows immediate and wide-spread use as a decision support for earlier discharge of low-risk patients to reduce the burden on the health care system.Clinical Trial RegistrationAustrian Coronavirus Adaptive Clinical Trial (ACOVACT); ClinicalTrials.gov, identifier NCT04351724.
  •  
9.
  • Latour, M., et al. (författare)
  • Quantitative spectral analysis of the sdB star HD188112 : A helium-core white dwarf progenitor
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 585
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. HD 188112 is a bright (V = 10 : 2 mag) hot subdwarf B (sdB) star with a mass too low to ignite core helium burning and is therefore considered a pre-extremely low-mass (ELM) white dwarf (WD). ELM WDs (M less than or similar to 0.3 M-circle dot) are He-core objects produced by the evolution of compact binary systems. Aims. We present in this paper a detailed abundance analysis of HD188112 based on high-resolution Hubble Space Telescope (HST) near-and far-ultraviolet spectroscopy. We also constrain the mass of the star's companion. Methods. We use hybrid non-LTE model atmospheres to fit the observed spectral lines, and to derive the abundances of more than a dozen elements and the rotational broadening of metallic lines. Results. We confirm the previous binary system parameters by combining radial velocities measured in our UV spectra with the previously published values. The system has a period of 0.60658584 days and a WD companion with M >= 0.70 M-circle dot. By assuming a tidally locked rotation combined with the projected rotational velocity (v sin i = 7.9 +/- 0.3 km s(-1)), we constrain the companion mass to be between 0.9 and 1.3 M-circle dot. We further discuss the future evolution of the system as a potential progenitor of an underluminous type Ia supernova. We measure abundances for Mg, Al, Si, P, S, Ca, Ti, Cr, Mn, Fe, Ni, and Zn, and for the trans-iron elements Ga, Sn, and Pb. In addition, we derive upper limits for the C, N, O elements and find HD188112 to be strongly depleted in carbon. We find evidence of non-LTE e ff ects on the line strength of some ionic species such as Si II and Ni II. The metallic abundances indicate that the star is metal-poor, with an abundance pattern most likely produced by diffusion effects.
  •  
10.
  • Sebastian, D., et al. (författare)
  • Sub-stellar companions of intermediate-mass stars with CoRoT: CoRoT-34b, CoRoT-35b, and CoRoT-36b
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 516:1, s. 636-655
  • Tidskriftsartikel (refereegranskat)abstract
    • Theories of planet formation give contradicting results of how frequent close-in giant planets of intermediate mass stars (IMSs; 1.3 <= M-* <= 3.2 M-circle dot) are. Some theories predict a high rate of IMSs with close-in gas giants, while others predict a very low rate. Thus, determining the frequency of close-in giant planets of IMSs is an important test for theories of planet formation. We use the CoRoT survey to determine the absolute frequency of IMSs that harbour at least one close-in giant planet and compare it to that of solar-like stars. The CoRoT transit survey is ideal for this purpose, because of its completeness for gas-giant planets with orbital periods of less than 10 d and its large sample of main-sequence IMSs. We present a high precision radial velocity follow-up programme and conclude on 17 promising transit candidates of IMSs, observed with CoRoT. We report the detection of CoRoT-34b, a brown dwarf close to the hydrogen burning limit, orbiting a 1.1 Gyr A-type main-sequence star. We also confirm two inflated giant planets, CoRoT-35b, part of a possible planetary system around a metal-poor star, and CoRoT-36b on a misaligned orbit. We find that 0.12 +/- 0.10 per cent of IMSs between 1.3 <= M-* <= 1.6 M-circle dot observed by CoRoT do harbour at least one close-in giant planet. This is significantly lower than the frequency (0.70 +/- 0.16 per cent) for solar-mass stars, as well as the frequency of IMSs harbouring long-period planets (similar to 8 per cent).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy