SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heber U) "

Sökning: WFRF:(Heber U)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Kupfer, T., et al. (författare)
  • The OmegaWhite Survey for Short-period Variable Stars. V. Discovery of an Ultracompact Hot Subdwarf Binary with a Compact Companion in a 44-minute Orbit
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 851:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of the ultracompact hot subdwarf (sdOB) binary OW J074106.0-294811.0 with an orbital period of P-orb = 44.66279 +/- 1.16 x 10(-4) minutes, making it the most compact hot subdwarf binary known. Spectroscopic observations using the VLT, Gemini and Keck telescopes revealed a He-sdOB primary with an intermediate helium abundance, T-eff = 39 400 +/- 500 K and log g = 5.74 +/- 0.09. High signal-to-noise ratio light curves show strong ellipsoidal modulation resulting in a derived sdOB mass M-sdOB= 0.23 +/- 0.12 M-circle dot with a WD companion (M-WD = 0.72 +/- 0.17 M-circle dot). The mass ratio was found to be q = M-sdOB/M-WD = 0.32 +/- 0.10. The derived mass for the He-sdOB is inconsistent with the canonical mass for hot subdwarfs of approximate to 0.47 M-circle dot. To put constraints on the structure and evolutionary history of the sdOB star we compared the derived T-eff, log g, and sdOB mass to evolutionary tracks of helium stars and helium white dwarfs calculated with Modules for Experiments in Stellar Astrophysics (MESA). We find that the best-fitting model is a helium white dwarf with a mass of 0.320 M-circle dot, which left the common envelope approximate to 1.1 Myr ago, which is consistent with the observations. As a helium white dwarf with a massive white dwarf companion, the object will reach contact in 17.6 Myr at an orbital period of 5 minutes. Depending on the spin-orbit synchronization timescale the object will either merge to form an R CrB star or end up as a stably accreting AM CVn-type system with a helium white dwarf donor.
  •  
4.
  • Latour, M., et al. (författare)
  • Quantitative spectral analysis of the sdB star HD188112 : A helium-core white dwarf progenitor
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 585
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. HD 188112 is a bright (V = 10 : 2 mag) hot subdwarf B (sdB) star with a mass too low to ignite core helium burning and is therefore considered a pre-extremely low-mass (ELM) white dwarf (WD). ELM WDs (M less than or similar to 0.3 M-circle dot) are He-core objects produced by the evolution of compact binary systems. Aims. We present in this paper a detailed abundance analysis of HD188112 based on high-resolution Hubble Space Telescope (HST) near-and far-ultraviolet spectroscopy. We also constrain the mass of the star's companion. Methods. We use hybrid non-LTE model atmospheres to fit the observed spectral lines, and to derive the abundances of more than a dozen elements and the rotational broadening of metallic lines. Results. We confirm the previous binary system parameters by combining radial velocities measured in our UV spectra with the previously published values. The system has a period of 0.60658584 days and a WD companion with M >= 0.70 M-circle dot. By assuming a tidally locked rotation combined with the projected rotational velocity (v sin i = 7.9 +/- 0.3 km s(-1)), we constrain the companion mass to be between 0.9 and 1.3 M-circle dot. We further discuss the future evolution of the system as a potential progenitor of an underluminous type Ia supernova. We measure abundances for Mg, Al, Si, P, S, Ca, Ti, Cr, Mn, Fe, Ni, and Zn, and for the trans-iron elements Ga, Sn, and Pb. In addition, we derive upper limits for the C, N, O elements and find HD188112 to be strongly depleted in carbon. We find evidence of non-LTE e ff ects on the line strength of some ionic species such as Si II and Ni II. The metallic abundances indicate that the star is metal-poor, with an abundance pattern most likely produced by diffusion effects.
  •  
5.
  • Nair, Arjun, et al. (författare)
  • Variable radiological lung nodule evaluation leads to divergent management recommendations
  • 2018
  • Ingår i: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 52:6, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiological evaluation of incidentally detected lung nodules on computed tomography (CT) influences management. We assessed international radiological variation in 1) pulmonary nodule characterisation; 2) hypothetical guideline-derived management; and 3) radiologists' management recommendations.107 radiologists from 25 countries evaluated 69 CT-detected nodules, recording: 1) first-choice composition (solid, part-solid or ground-glass, with percentage confidence); 2) morphological features; 3) dimensions; 4) recommended management; and 5) decision-influencing factors. We modelled hypothetical management decisions on the 2005 and updated 2017 Fleischner Society, and both liberal and parsimonious interpretations of the British Thoracic Society 2015 guidelines.Overall agreement for first-choice nodule composition was good (Fleiss' κ=0.65), but poorest for part-solid nodules (weighted κ 0.62, interquartile range 0.50-0.71). Morphological variables, including spiculation (κ=0.35), showed poor-to-moderate agreement (κ=0.23-0.53). Variation in diameter was greatest at key thresholds (5 mm and 6 mm). Agreement for radiologists' recommendations was poor (κ=0.30); 21% disagreed with the majority. Although agreement within the four guideline-modelled management strategies was good (κ=0.63-0.73), 5-10% of radiologists would disagree with majority decisions if they applied guidelines strictly.Agreement was lowest for part-solid nodules, while significant measurement variation exists at important size thresholds. These variations resulted in generally good agreement for guideline-modelled management, but poor agreement for radiologists' actual recommendations.
  •  
6.
  • Sebastian, D., et al. (författare)
  • Sub-stellar companions of intermediate-mass stars with CoRoT: CoRoT-34b, CoRoT-35b, and CoRoT-36b
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 516:1, s. 636-655
  • Tidskriftsartikel (refereegranskat)abstract
    • Theories of planet formation give contradicting results of how frequent close-in giant planets of intermediate mass stars (IMSs; 1.3 <= M-* <= 3.2 M-circle dot) are. Some theories predict a high rate of IMSs with close-in gas giants, while others predict a very low rate. Thus, determining the frequency of close-in giant planets of IMSs is an important test for theories of planet formation. We use the CoRoT survey to determine the absolute frequency of IMSs that harbour at least one close-in giant planet and compare it to that of solar-like stars. The CoRoT transit survey is ideal for this purpose, because of its completeness for gas-giant planets with orbital periods of less than 10 d and its large sample of main-sequence IMSs. We present a high precision radial velocity follow-up programme and conclude on 17 promising transit candidates of IMSs, observed with CoRoT. We report the detection of CoRoT-34b, a brown dwarf close to the hydrogen burning limit, orbiting a 1.1 Gyr A-type main-sequence star. We also confirm two inflated giant planets, CoRoT-35b, part of a possible planetary system around a metal-poor star, and CoRoT-36b on a misaligned orbit. We find that 0.12 +/- 0.10 per cent of IMSs between 1.3 <= M-* <= 1.6 M-circle dot observed by CoRoT do harbour at least one close-in giant planet. This is significantly lower than the frequency (0.70 +/- 0.16 per cent) for solar-mass stars, as well as the frequency of IMSs harbouring long-period planets (similar to 8 per cent).
  •  
7.
  • Silvotti, R., et al. (författare)
  • EPIC 216747137 : a new HW Vir eclipsing binary with a massive sdOB primary and a low-mass M-dwarf companion
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:2, s. 2461-2474
  • Tidskriftsartikel (refereegranskat)abstract
    • EPIC 216747137 is a new HW Virginis system discovered by the Kepler spacecraft during its K2 'second life'. Like the other HW Vir systems, EPIC 216747137 is a post-common-envelope eclipsing binary consisting of a hot subluminous star and a cool low-mass companion. The short orbital period of 3.87 h produces a strong reflection effect from the secondary (similar to 9 per cent in the R band). Together with AA Dor and V1828 Aql, EPIC 216747137 belongs to a small subgroup of HW Vir systems with a hot evolved sdOB primary. We find the following atmospheric parameters for the hot component: T-eff = 40400 +/- 1000 K, log g = 5.56 +/- 0.06, and log(N(He)/N(H)) = -2.59 +/- 0.05. The sdOB rotational velocity v sin i = 51 +/- 10 km s(-1) implies that the stellar rotation is slower than the orbital revolution and the system is not synchronized. When we combine photometric and spectroscopic results with the Gaia parallax, the best solution for the system corresponds to a primary with a mass of about 0.62 M-circle dot close to, and likely beyond, the central helium exhaustion, while the cool M-dwarf companion has a mass of about 0.11 M-circle dot.
  •  
8.
  • Sordo, Rosanna, et al. (författare)
  • Stellar libraries for Gaia
  • 2011
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 328:Conference 1, s. 012006-
  • Tidskriftsartikel (refereegranskat)abstract
    • Gaia will observe up to a billion stellar sources. Automated algorithms are under development to derive the atmospheric parameters of all observed spectra, from low resolution optical spectra alone or in synergy with high resolution spectra in the near-IR Ca II triplet region. To do so, a large database of state-of-the-art stellar libraries has been produced for the Gaia community, computed using different codes optimized for specific purposes. The choice to use different spectral codes in different regions of the H-R diagram raises the problem of the coherence of the different spectra, specifically in the transition zones. We present a comparison between the libraries from the point of view of spectra simulations for training the Gaia algorithms. We also present the implementation of these libraries into a Simple Stellar Population code.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy