SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hebling János) "

Sökning: WFRF:(Hebling János)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mak, Alan, et al. (författare)
  • Attosecond single-cycle undulator light : a review
  • 2019
  • Ingår i: Reports on progress in physics (Print). - : IOP Publishing. - 0034-4885 .- 1361-6633. ; 82:2
  • Forskningsöversikt (refereegranskat)abstract
    • Research at modern light sources continues to improve our knowledge of the natural world, from the subtle workings of life to matter under extreme conditions. Free-electron lasers, for instance, have enabled the characterization of biomolecular structures with sub-angstrom spatial resolution, and paved the way to controlling the molecular functions. On the other hand, attosecond temporal resolution is necessary to broaden our scope of the ultrafast world. Here we discuss attosecond pulse generation beyond present capabilities. Furthermore, we review three recently proposed methods of generating attosecond x-ray pulses. These novel methods exploit the coherent radiation of microbunched electrons in undulators and the tailoring of the emitted wavefronts. The computed pulse energy outperforms pre-existing technologies by three orders of magnitude. Specifically, our simulations of the proposed Soft X-ray Laser at MAX IV (Lund, Sweden) show that a pulse duration of 50-100 as and a pulse energy up to 5 mu J is feasible with the novel methods. In addition, the methods feature pulse shape control, enable the incorporation of orbital angular momentum, and can be used in combination with modern compact free-electron laser setups.
  •  
2.
  • Mak, Alan, et al. (författare)
  • Overview of Undulator Concepts for Attosecond Single-Cycle Light
  • 2018
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 1067
  • Tidskriftsartikel (refereegranskat)abstract
    • The production of intense attosecond light pulses is an active area in accelerator research, motivated by the stringent demands of attosecond science: (i) short pulse duration for resolving the fast dynamics of electrons in atoms and molecules; (ii) high photon flux for probing and controlling such dynamics with high precision. While the free-electron laser (FEL) can deliver the highest brilliance amongst laboratory x-ray sources today, the pulse duration is typically 10-100 femtoseconds. A major obstacle to attaining attosecond duration is that the number of optical cycles increases with every undulator period. Hence, an FEL pulse typically contains tens or hundreds of cycles. In recent years, several novel concepts have been proposed to shift this paradigm, providing the basis for single-cycle pulses and paving the way towards high-brilliance attosecond light sources. This article gives an overview of these concepts.
  •  
3.
  • Salén, Peter, et al. (författare)
  • Matter manipulation with extreme terahertz light: Progress in the enabling THz technology
  • 2019
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 836-837, s. 1-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Terahertz (THz) light has proven to be a fine tool to probe and control quasi-particles and collective excitations in solids, to drive phase transitions and associated changes in material properties, and to study rotations and vibrations in molecular systems. In contrast to visible light, which usually carries excessive photon energy for collective excitations in condensed matter systems, THz light allows for direct coupling to low-energy (meV scale) excitations of interest. The development of light sources of strong-field few-cycle THz pulses in the 2000s opened the door to controlled manipulation of reactions and processes. Such THz pulses can drive new dynamic states of matter, in which materials exhibit properties entirely different from that of the equilibrium. In this review, we first systematically analyze known studies on matter manipulation with strong-field few-cycle THz light and outline some anticipated new results. We focus on how properties of materials can be manipulated by driving the dynamics of different excitations and how molecules and particles can be controlled in useful ways by extreme THz light. Around 200 studies are examined, most of which were done during the last five years. Secondly, we discuss available and proposed sources of strong-field few-cycle THz pulses and their state-of-the-art operation parameters. Finally, we review current approaches to guiding, focusing, reshaping and diagnostics of THz pulses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy