SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hedayati Maryeh) "

Sökning: WFRF:(Hedayati Maryeh)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Hedayati, Maryeh, et al. (författare)
  • Impacts of SO2 gas impurity within a CO2 stream on reservoir rock of a CCS pilot site : Experimental and modelling approach
  • 2018
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836 .- 1878-0148. ; 70, s. 32-44
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to evaluate chemical impacts of SO2 impurity on reservoir rock during CO2 capture and storage in deep saline aquifers, several batch reactor experiments were performed on laboratory scale using core rock samples from the pilot CO2 injection site in Heletz. In this experiment, the samples were exposed to pure N-2(g), pure CO2(g), and CO2(g) with an impurity of 1.5% SO2(g) under reservoir conditions for pressure and temperature (14.5 MPa, 60 degrees C). Based on the set-up and the obtained experimental results, a batch chemical model was established using the numerical simulation program TOUGHREACT V3.0-OMP. Comparing laboratory and simulation data provides a better understanding of the rock-brine-gas interactions. In addition, it offers an evaluation of the capability of the model to predict chemical interactions in the target injection reservoir during exposure to pure and impure CO2. The best match between the geochemical model and experimental data was achieved when the reactive surface area of minerals in the model was adjusted in order to calibrate the kinetic rates of minerals. The simulations indicated that SO2(g) tends to dissolve rather quickly and oxidizes under a kinetic control. Hence, it has a stronger effect on the acidity of the brine than pure CO2(g) and as a result, increased mineral dissolution and caused the precipitation of sulfate and sulfide minerals. Ankerite, dolomite, and siderite, the most abundant carbonates in the sandstone rock sample, are subject to stronger dissolution in the presence of SO2 gas. The performed simulations confirmed a slower dissolution rate for ankerite and siderite than for dolomite. The model reproduced the precipitation of pyrite and anhydrite as observed in the laboratory. The dissolution of dolomite observed in the batch reaction test with pure N-2 is assumed to be due to slight contamination with oxygen and modelling supported this. The inclusion of SO2 increased the porosity over that of the pure CO2 case, and is thus considered to increase the permeability and injectivity of the reservoir as well. Exposure to SO2 also increased the concentration of trace elements. The calibrated kinetic parameters determined in this study will be used to model the injection and long-term behavior of CO2 at the Heletz field site, and may be used for similar geologic reservoirs.
  •  
4.
  • Hedayati, Maryeh, et al. (författare)
  • Transport and retention of carbon-based engineered and natural nanoparticles through saturated porous media
  • 2016
  • Ingår i: Journal of nanoparticle research. - : Springer. - 1388-0764 .- 1572-896X. ; 18:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon-based engineered nanoparticles have been widely used due to their small size and unique physical and chemical properties. At the same time, the toxic effects of these nanoparticles on human and fish cells have also been observed; therefore, their release and distribution into the surface and subsurface environment is a subject of concern. The aim of this research is to evaluate and compare the transports and retentions of two types of engineered nanoparticles (multiwalled carbon nanotubes and C-60) and the natural carbon nanoparticles collected from a fire accident. Several laboratory experiments were conducted to observe the transport behavior of nanoparticles through a column packed with silica sand. The column experiments were intended to monitor the effect of ionic strength on transport of nanoparticles as a function of their shapes. It was observed that the mobilities of both types of engineered nanoparticles were reduced with the increasing ionic strength from 1.34 to 60 mM. However, at ionic strengths up to 10.89 mM, spherical nanoparticles were more mobile than cylindrical nanoparticles, but the mobility of the cylindrical nanoparticles became significantly higher than spherical nanoparticles at the ionic strength of 60 mM. In comparison with natural fire-born nanoparticles, both types of engineered nanoparticles were much less mobile under the selected experimental condition in this study. Furthermore, inverse modeling was used to calculate parameters such as attachment efficiency, the longitudinal dispersivity, and capacity of the solid phase for the attachment of nanoparticles. The results indicate that the combination of the shape and the solution chemistry of the NPs are responsible for the transport and the retention of nanoparticles in natural environment; however, fire-burned nanoparticles can be highly mobile at the natural groundwater chemistry.
  •  
5.
  • Niemi, Auli, et al. (författare)
  • Characterizing CO2 residual trapping in-situ by means of single-well push-pull experiments at Heletz, Israel, pilot injection site : experimental procedures and results of the experiments
  • 2020
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836 .- 1878-0148. ; 101
  • Tidskriftsartikel (refereegranskat)abstract
    • Two dedicated field experiments have been carried out at the Heletz, Israel pilot CO2 injection site. The objective has been to quantify the CO2 residual trapping in-situ, based on two distinctly different methods. Both experiments are based on the principle of a combination of hydraulic, thermal and/or tracer tests before and after creating the residually trapped zone of CO2 and using the difference in the responses of these tests to estimate the in-situ residual trapping. In Residual Trapping Experiment I (RTE I), carried out in autumn 2016, the main characterization test before and after the creation of the residually trapped zone were hydraulic withdrawal tests. In this experiment, the residually trapped zone was also created by fluid withdrawal, by first injecting CO2, then withdrawing fluids until CO2 was at residual saturation. The second experiment, Residual Trapping Experiment II (RTE II), was carried out autumn 2017. In this experiment, the residually trapped CO2 zone was created by CO2 injection, followed by the injection of CO2-saturated water, to push away the mobile CO2 and leave the residually trapped CO2 behind. In this test, the main reference test carried out before and after creating the residually trapped zone was injection and recovery of gas partitioning tracer Krypton. This paper presents the experimental procedures and results of these experiments. A hydraulic withdrawal test as a characterization method was robust and gave a clear signal. Given the difficulties in injecting water optimally saturated with CO2, in order not to dissolve the residually trapped CO2 or to create situations with excess mobile gas, withdrawal test may also be a generally preferable hydraulic testing method, in comparison to injection. The limitation of any hydraulic test is that it only gives an averaged value over the test section. At Heletz additional information about CO2 distribution was obtained based on thermal measurements and by monitoring the pressure difference between the two sensors in the bolehole. The latter could be used to estimate the amount of mobile CO2 in the well test section. Tracer experiments with gas partitioning tracers can in principle give more detailed information of CO2 residual distribution in the reservoir than hydraulic tests can, but are also far more complicated to carry out, involving sophisticated and sensitive equipment. In the Heletz case the optimal injection of CO2-saturated water turned out to be difficult to achieve. Creating the zone of residual saturation by means of fluid withdrawal rather than by injecting CO2-saturated water seemed a more robust approach. Monitoring the gas contents in the test interval gave good guidance on the state of the system. Model interpretations of the two experiments to obtain values for CO2 residual saturation are presented in companion papers in this same Special Edition.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy