SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hegstad A) "

Sökning: WFRF:(Hegstad A)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Gudmundsdottir, Jonina S., et al. (författare)
  • The chemotherapeutic drug methotrexate selects for antibiotic resistance
  • 2021
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 74
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Understanding drivers of antibiotic resistance evolution is fundamental for designing optimal treatment strategies and interventions to reduce the spread of antibiotic resistance. Various cytotoxic drugs used in cancer chemotherapy have antibacterial properties, but how bacterial populations are affected by these selective pressures is unknown. Here we test the hypothesis that the widely used cytotoxic drug methotrexate affects the evolution and selection of antibiotic resistance.Methods: First, we determined methotrexate susceptibility (IC90) and selective abilities in a collection of Escherichia coli and Klebsiella pneumoniae strains with and without pre-existing trimethoprim resistance determinants. We constructed fluorescently labelled pairs of E. coli MG1655 differing only in trimethoprim resistance determinants and determined the minimum selective concentrations of methotrexate using flow-cytometry. We further used an experimental evolution approach to investigate the effects of methotrexate on de novo trimethoprim resistance evolution.Findings: We show that methotrexate can select for acquired trimethoprim resistance determinants located on the chromosome or a plasmid. Additionally, methotrexate co-selects for genetically linked resistance determinants when present together with trimethoprim resistance on a multi-drug resistance plasmid. These selective effects occur at concentrations 40- to >320-fold below the methotrexate minimal inhibitory concentration.Interpretation: Our results strongly suggest a selective role of methotrexate for virtually any antibiotic resistance determinant when present together with trimethoprim resistance on a multi-drug resistance plasmid. The presented results may have significant implications for patient groups strongly depending on effective antibiotic treatment.
  •  
4.
  •  
5.
  • Wagner, T., et al. (författare)
  • Enterococcus faecium produces membrane vesicles containing virulence factors and antimicrobial resistance related proteins
  • 2018
  • Ingår i: Journal of Proteomics. - : Elsevier. - 1874-3919 .- 1876-7737. ; 187, s. 28-38
  • Tidskriftsartikel (refereegranskat)abstract
    • Enterococcus faecium is a commensal but also a bacteremia causing pathogen, which is inherently resistant to several antimicrobials and has a great ability to acquire new traits. Bacterial membrane vesicles (MVs) are increasingly recognized as a mode of cell-free communication and a way to deliver virulence factors and/or antimicrobial resistance determinants. These features make MVs interesting research targets in research on critical hospital pathogens. This study describes for the first time that E. faecium strains produce MVs. It presents a morphological as well as a proteomic analysis of MVs isolated from four different, clinically relevant E. faecium strains grown under two different conditions and identifies MV-associated proteins in all of them. Interestingly, 11 virulence factors are found among the MV-associated proteins, including biofilm-promoting proteins and extracellular matrix-binding proteins, which may aid in enterococcal colonization. Additionally, 11 antimicrobial resistance-related proteins were MV-associated. Among those, all proteins encoded by the vanA-cluster of a vancomycin resistant strain were found to be MV-associated. This implies that E. faecium MVs may be utilized by the bacterium to release proteins promoting virulence, pathogenicity and antimicrobial resistance. Significance: Enterococcal infections, especially bacteremia and endocarditis, are challenging to treat because E. faecium have acquired resistance to multiple classes of antimicrobials, including ampicillin, aminoglycosides, and glycopeptides. Thus, research on different modes of enterococcal pathogenicity is warranted. This study utilized a proteomic approach to identify MV-associated proteins of different nosocomial E. faecium strains representing four clinically relevant sequence types (STs), namely ST17, ST18, ST78, and ST192. The presented data suggest that E. faecium MVs are involved in virulence and antimicrobial resistance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy