SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heidbrink W.W.) "

Sökning: WFRF:(Heidbrink W.W.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carolipio, E. M., et al. (författare)
  • The toroidicity-induced Alfven eigenmode structure in DIII-D : Implications of soft x-ray and beam-ion loss data
  • 2001
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 8:7, s. 3391-3401
  • Tidskriftsartikel (refereegranskat)abstract
    • The internal structure of the toroidicity-induced Alfven eigenmode (TAE) is studied by comparing soft x-ray profile and beam ion loss data taken during TAE activity in the DIII-D tokamak [W. W. Heidbrink , Nucl. Fusion 37, 1411 (1997)] with predictions from theories based on ideal magnetohydrodynamic (MHD), gyrofluid, and gyrokinetic models. The soft x-ray measurements indicate a centrally peaked eigenfunction, a feature which is closest to the gyrokinetic model's prediction. The beam ion losses are simulated using a guiding center code. In the simulations, the TAE eigenfunction calculated using the ideal MHD model acts as a perturbation to the equilibrium field. The predicted beam ion losses are an order of magnitude less than the observed similar to6%-8% losses at the peak experimental amplitude of deltaB(r)/B(0)similar or equal to2-5x10(-4).
  •  
2.
  • Du, X. D., et al. (författare)
  • Multiscale Chirping Modes Driven by Thermal Ions in a Plasma with Reactor-Relevant Ion Temperature
  • 2021
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 127:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A thermal ion driven bursting instability with rapid frequency chirping, considered as an Alfvenic ion temperature gradient mode, has been observed in plasmas having reactor-relevant temperature in the DIII-D tokamak. The modes are excited over a wide spatial range from macroscopic device size to microturbulence size and the perturbation energy propagates across multiple spatial scales. The radial mode structure is able to expand from local to global in similar to 0.1 ms and it causes magnetic topology changes in the plasma edge, which can lead to a minor disruption event. Since the mode is typically observed in the high ion temperature greater than or similar to 10 keV and high-beta plasma regime, the manifestation of the mode in future reactors should be studied with development of mitigation strategies, if needed. This is the first observation of destabilization of the Alfven continuum caused by the compressibility of ions with reactor-relevant ion temperature.
  •  
3.
  • Du, X. D., et al. (författare)
  • Visualization of Fast Ion Phase-Space Flow Driven by Alfven Instabilities
  • 2021
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 127:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast ion phase-space flow, driven by Alfven eigenmodes (AEs), is measured by an imaging neutral particle analyzer in the DIII-D tokamak. The flow firstly appears near the minimum safety factor at the injection energy of neutral beams, and then moves radially inward and outward by gaining and losing energy, respectively. The flow trajectories in phase space align well with the intersection lines of the constant magnetic moment surfaces and constant E - (omega / n)P-zeta surfaces, where E, P-zeta are the energy and canonical toroidal momentum of ions; omega and n are angular frequencies and toroidal mode numbers of AEs. It is found that the flow is so destructive that the thermalization of fast ions is no longer observed in regions of strong interaction. The measured phase-space flow is consistent with nonlinear hybrid kinetic-magnetohydrodynamics simulation. Calculations of the relatively narrow phase-space islands reveal that fast ions must transition between different flow trajectories to experience large-scale phase-space transport.
  •  
4.
  •  
5.
  • Fasoli, A., et al. (författare)
  • Chapter 5 : Physics of energetic ions
  • 2007
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 47:6, s. S264-S284
  • Forskningsöversikt (refereegranskat)abstract
    • This chapter reviews the progress accomplished since the redaction of the first ITER Physics Basis (1999 Nucl. Fusion 39 2137-664) in the field of energetic ion physics and its possible impact on burning plasma regimes. New schemes to create energetic ions simulating the fusion-produced alphas are introduced, accessing experimental conditions of direct relevance for burning plasmas, in terms of the Alfvenic Mach number and of the normalised pressure gradient of the energetic ions, though orbit characteristics and size cannot always match those of ITER. Based on the experimental and theoretical knowledge of the effects of the toroidal magnetic field ripple on direct fast ion losses, ferritic inserts in ITER are expected to provide a significant reduction of ripple alpha losses in reversed shear configurations. The nonlinear fast ion interaction with kink and tearing modes is qualitatively understood, but quantitative predictions are missing, particularly for the stabilisation of sawteeth by fast particles that can trigger neoclassical tearing modes. A large database on the linear stability properties of the modes interacting with energetic ions, such as the Alfven eigenmode has been constructed. Comparisons between theoretical predictions and experimental measurements of mode structures and drive/damping rates approach a satisfactory degree of consistency, though systematic measurements and theory comparisons of damping and drive of intermediate and high mode numbers, the most relevant for ITER, still need to be performed. The nonlinear behaviour of Alfven eigenmodes close to marginal stability is well characterized theoretically and experimentally, which gives the opportunity to extract some information on the particle phase space distribution from the measured instability spectral features. Much less data exists for strongly unstable scenarios, characterised by nonlinear dynamical processes leading to energetic ion redistribution and losses, and identified in nonlinear numerical simulations of Alfven eigenmodes and energetic particle modes. Comparisons with theoretical and numerical analyses are needed to assess the potential implications of these regimes on burning plasma scenarios, including in the presence of a large number of modes simultaneously driven unstable by the fast ions.
  •  
6.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
7.
  • Garcia-Munoz, M., et al. (författare)
  • Active control of Alfven eigenmodes in magnetically confined toroidal plasmas
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 61:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Alfven waves are electromagnetic perturbations inherent to magnetized plasmas that can be driven unstable by a free energy associated with gradients in the energetic particles' distribution function. The energetic particles with velocities comparable to the Alfven velocity may excite Alfven instabilities via resonant wave-particle energy and momentum exchange. Burning plasmas with large population of fusion born super-Alfvenic alpha particles in magnetically confined fusion devices are prone to excite weakly-damped Alfven eigenmodes (AEs) that, if allowed to grow unabated, can cause a degradation of fusion performance and loss of energetic ions through a secular radial transport. In order to control the fast-ion distribution and associated Alfvenic activity, the fusion community is currently searching for external actuators that can control AEs and energetic ions in the harsh environment of a fusion reactor. Most promising control techniques are based on (i) variable fast-ion sources to modify gradients in the energetic particles' distribution, (ii) localized electron cyclotron resonance heating to affect the fast-ion slowing-down distribution, (iii) localized electron cyclotron current drive to modify the equilibrium magnetic helicity and thus the AE existence criteria and damping mechanisms, and (iv) externally applied 3D perturbative fields to manipulate the fast-ion distribution and thus the wave drive. Advanced simulations help to identify the key physics mechanisms underlying the observed AE mitigation and suppression and thus to develop robust control techniques towards future burning plasmas.
  •  
8.
  •  
9.
  • Meyer, H., et al. (författare)
  • Overview of physics results from MAST towards ITER/DEMO and the MAST Upgrade
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:10, s. 104008-
  • Tidskriftsartikel (refereegranskat)abstract
    • New diagnostic, modelling and plant capability on the Mega Ampere Spherical Tokamak (MAST) have delivered important results in key areas for ITER/DEMO and the upcoming MAST Upgrade, a step towards future ST devices on the path to fusion currently under procurement. Micro-stability analysis of the pedestal highlights the potential roles of micro-tearing modes and kinetic ballooning modes for the pedestal formation. Mitigation of edge localized modes (ELM) using resonant magnetic perturbation has been demonstrated for toroidal mode numbers n = 3, 4, 6 with an ELM frequency increase by up to a factor of 9, compatible with pellet fuelling. The peak heat flux of mitigated and natural ELMs follows the same linear trend with ELM energy loss and the first ELM-resolved T-i measurements in the divertor region are shown. Measurements of flow shear and turbulence dynamics during L-H transitions show filaments erupting from the plasma edge whilst the full flow shear is still present. Off-axis neutral beam injection helps to strongly reduce the redistribution of fast-ions due to fishbone modes when compared to on-axis injection. Low-k ion-scale turbulence has been measured in L-mode and compared to global gyro-kinetic simulations. A statistical analysis of principal turbulence time scales shows them to be of comparable magnitude and reasonably correlated with turbulence decorrelation time. T-e inside the island of a neoclassical tearing mode allow the analysis of the island evolution without assuming specific models for the heat flux. Other results include the discrepancy of the current profile evolution during the current ramp-up with solutions of the poloidal field diffusion equation, studies of the anomalous Doppler resonance compressional Alfven eigenmodes, disruption mitigation studies and modelling of the new divertor design for MAST Upgrade. The novel 3D electron Bernstein synthetic imaging shows promising first data sensitive to the edge current profile and flows.
  •  
10.
  • Okabayashi, M., et al. (författare)
  • Off-axis Fishbone-like Instability and Excitation of Resistive Wall Mode in JT-60U and DIII-D
  • 2011
  • Ingår i: Physics of Plasmas. - 1089-7674 .- 1070-664X. ; 18, s. 056121-
  • Tidskriftsartikel (refereegranskat)abstract
    • An energetic-particle (EP)-driven “off-axis-fishbone-like mode (OFM)” often triggers a resistive wall mode (RWM) in JT-60U and DIII-D devices, preventing long-duration high-βN discharges. In these experiments, the EPs are energetic ions (70–85 keV) injected by neutral beams to produce high-pressure plasmas. EP-driven bursting events reduce the EP density and the plasma rotation simultaneously. These changes are significant in high-βN low-rotation plasmas, where the RWM stability is predicted to be strongly influenced by the EP precession drift resonance and by the plasma rotation near the q = 2 surface (kinetic effects). Analysis of these effects on stability with a self-consistent perturbation to the mode structure using the MARS-K code showed that the impact of EP losses and rotation drop is sufficient to destabilize the RWM in low-rotation plasmas, when the plasma rotation normalized by Alfvén frequency is only a few tenths of a percent near the q = 2 surface. The OFM characteristics are very similar in JT-60U and DIII-D, including nonlinear mode evolution. The modes grow initially like a classical fishbone, and then the mode structure becomes strongly distorted. The dynamic response of the OFM to an applied n = 1 external field indicates that the mode retains its external kink character. These comparative studies suggest that an energetic particle-driven “off-axis-fishbone-like mode” is a new EP-driven branch of the external kink mode in wall-stabilized plasmas, analogous to the relationship of the classical fishbone branch to the internal kink mode.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy