SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heintzenberg J.) "

Sökning: WFRF:(Heintzenberg J.)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mann, G. W., et al. (författare)
  • Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:9, s. 4679-4713
  • Tidskriftsartikel (refereegranskat)abstract
    • Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multimodel-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e. g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.
  •  
2.
  • Tjernström, Michael, et al. (författare)
  • The Arctic Summer Cloud Ocean Study (ASCOS) : overview and experimental design
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:6, s. 2823-2869
  • Tidskriftsartikel (refereegranskat)abstract
    • The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007-2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87 degrees 21' N, 01 degrees 29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations, and the balance between local and remote aerosols sources remains open. Lack of cloud condensation nuclei (CCN) was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.
  •  
3.
  • Brenninkmeijer, C. A. M., et al. (författare)
  • Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system
  • 2007
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7324. ; 7:18, s. 4953-4976
  • Tidskriftsartikel (refereegranskat)abstract
    • An airfreight container with automated instruments for measurement of atmospheric gases and trace compounds was operated on a monthly basis onboard a Boeing 767-300 ER of LTU International Airways during long-distance flights from 1997 to 2002 (CARIBIC, Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container, http://www.caribic-atmospheric.com). Subsequently a more advanced system has been developed, using a larger capacity container with additional equipment and an improved inlet system. CARIBIC phase #2 was implemented on a new long-range aircraft type Airbus A340-600 of the Lufthansa German Airlines (Star Alliance) in December 2004, creating a powerful flying observatory. The instrument package comprises detectors for the measurement of O-3, total and gaseous H2O, NO and NOy, CO, CO2, O-2, Hg, and number concentrations of sub-micrometer particles (>4 nm, >12 nm, and >18 nm diameter). Furthermore, an optical particle counter (OPC) and a proton transfer mass spectrometer (PTR-MS) are incorporated. Aerosol samples are collected for analysis of elemental composition and particle morphology after flight. Air samples are taken in glass containers for laboratory analyses of hydrocarbons, halocarbons and greenhouse gases (including isotopic composition of CO2) in several laboratories. Absorption tubes collect oxygenated volatile organic compounds. Three differential optical absorption spectrometers (DOAS) with their telescopes mounted in the inlet system measure atmospheric trace gases such as BrO, HONO, and NO2. A video camera mounted in the inlet provides information about clouds along the flight track. The flying observatory, its equipment and examples of measurement results are reported.
  •  
4.
  • Artaxo, Paulo, et al. (författare)
  • Tropical and Boreal Forest – Atmosphere Interactions : A Review
  • 2022
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 74:1, s. 24-163
  • Forskningsöversikt (refereegranskat)abstract
    • This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiäla in Finland. The review is complemented by short-term observations from networks and large experiments.The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction.Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink.It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests.
  •  
5.
  • Gieray, R., et al. (författare)
  • Phase partitioning of aerosol constituents in cloud based on single-particle and bulk analysis
  • 1997
  • Ingår i: Atmospheric Environment. - 1352-2310. ; 31:16, s. 2491-2502
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-particle analysis, performed by laser microprobe mass spectrometry and bulk analytical techniques were used to study aerosol-cloud interactions within the third field campaign of the EUROTRAC subproject 'ground-based cloud experiments' at the Great Dun Fell, Cumbria, U.K. in spring 1993. The shape of the ridge made it possible for ground-based instrumentation to sample similar parcels of air before, during and after their transit through the cloud. A single jet five-stage minicascade impactor was used for sampling particles of the interstitial aerosol. A second impactor worked in tandem with a counter-flow virtual impactor and collected residues of cloud droplets. Considering marine conditions largest droplets nucleated on sea-salt particles, whereas smaller droplets were formed on sulphate and methane sulphonate containing particles. This clearly indicates chemical inhomogeneities in the droplet phase. Particles, which were disfavoured by droplet formation, often contained the highest amounts of water-insoluble carbonaceous matter. For the submicron size range we found that the carbonaceous matter was always internally mixed with sulphate. The fraction of carbonaceous matter increased with decreasing size. A detectable fraction of particles remained in the cloud interstitial air, although they were in size as well as in composition suitable to form cloud droplets. The findings confirm that nucleation is the most important process affecting phase partitioning in cloud, but that spatial and temporal variations of water vapour supersaturation have also an influence on the observed phase partitioning. Proton induced X-ray emission analysis and light absorption measurements of filter samples showed that the average scavenged fraction was 0.77 for sulphur and 0.57 for soot in clouds formed by continental influenced air and 0.62 and 0.44, respectively, for marine influenced clouds.
  •  
6.
  • Hansson, H. C., et al. (författare)
  • PIXE in complex analytical systems for atmospheric chemistry
  • 1987
  • Ingår i: Nuclear Inst. and Methods in Physics Research, B. - 0168-583X. ; 22:1-3, s. 235-240
  • Tidskriftsartikel (refereegranskat)abstract
    • A schematic mechanistic box model presenting processes in atmospheric chemical cycles is used to present the main research objectives. From this the main use of PIXE within atmospheric chemistry is discussed. An analytic system giving molecular composition is necessary to fully understand and quantify the chemical and physical pathways described in the model for different compounds. Combining PIXE with complementary techniques can enhance knowledge of molecular composition. Therefore, techniques which are complementary to PIXE that give such important parameters as mass, soot, and major ions are discussed. Difficulties in efficiently combining and using the discussed analytical techniques in practice are recognized. The sampling substrates and sampling methods used are discussed and evaluated from this point of view. The use of thin Al foil as substrate and an electrostatic precipitator for aerosol sampling is suggested as one solution. The importance of developing methods for use of this analytical system of the different phases present in the atmosphere is stressed.
  •  
7.
  • Hermann, M, et al. (författare)
  • Submicrometer aerosol particle distributions in the upper troposphere over the mid-latitude North Atlantic - Results from the third route of 'CARIBIC'
  • 2008
  • Ingår i: Tellus. Series B: Chemical and Physical Meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 60:1, s. 106-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Particle number and mass concentrations of submicrometer aerosol particles were determined for the upper troposphere over the mid-latitude North Atlantic within the Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container project (CARIBIC, http://www.caribic-atmospheric.com). Between May 2001 and April 2002, 22 flights from Germany to the Caribbean were conducted using an automated measurement container on a B767 passenger aircraft. Spatial and seasonal probability distributions for ultrafine and Aitken mode particles as well as mass concentrations of particulate sulphur in 8-12 km altitude are presented. High particle number concentrations (mostly 2500-15 000 particles cm(-3) STP) are particularly found in summer over the western North Atlantic Ocean close to the North American continent. The distributions together with an analysis of particle source processes show that deep vertical transport is the dominant process leading to most of the events with high particle number concentrations (greater than or similar to 8000 particles cm(-3) STP) for ultrafine particles as well as for Aitken mode particles. This study emphasizes the importance of deep vertical transport and cloud processing for the concentration of aerosol particles in the upper troposphere.
  •  
8.
  •  
9.
  • Martinsson, Bengt, et al. (författare)
  • Characteristics and origin of lowermost stratospheric aerosol at northern midlatitudes under volcanically quiescent conditions based on CARIBIC observations
  • 2005
  • Ingår i: Journal of Geophysical Research. - 2156-2202. ; 110
  • Tidskriftsartikel (refereegranskat)abstract
    • Characteristics and origin of the aerosol in the lowermost stratosphere at northern midlatitudes were studied using measurements from a passenger aircraft ( Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container, or CARIBIC). Aerosol samples were collected during 60 intercontinental flights during 1999 - 2002 and analyzed for elemental composition with particle-induced X-ray emission ( PIXE). Concurrent measurements of trace gases were used to interpret the aerosol measurements. It was found that particulate sulfur concentration increased steadily in the potential vorticity ( PV) region of 2 - 7 PVU, whereas particulate potassium and iron showed no such dependence. The variability in concentration of the latter two elements was mainly connected with season, similar to their variation in the upper troposphere, whereas PV dominated the particulate sulfur variability. An ozone-based model was developed to quantitatively determine the mixing of stratospheric and tropospheric air masses. A significant dependence on PV was found, and the stratospheric fraction of the air peaked during spring. It was found that the particulate sulfur concentration was strongly dependent on the origin of the air masses. The concentration increased by a factor of 3 over the lowermost stratosphere. A discontinuity in the concentration over the tropopause indicated particle formation from sulfur dioxide transported across the tropopause. The concentration at the top of the lowermost stratosphere was used to estimate that the particulate sulfur production in the stratosphere is 0.066 Tg S/yr with approximately half of the amount transported across the top of the lowermost stratosphere originating in carbonyl sulfide.
  •  
10.
  • Nguyen Ngoc, Hung, et al. (författare)
  • Chemical composition and morphology of individual aerosol particles from a CARIBIC flight at 10 km altitude between 50 degrees N and 30 degrees S
  • 2008
  • Ingår i: Journal of Geophysical Research. - 2156-2202. ; 113:D23
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of individual particles by analytical electron microscopy as well as quantitative analysis using particle-induced X-ray emission (PIXE) and particle elastic scattering analysis (PESA) were carried out on samples collected from a flight at 10 km altitude between 50 degrees N and 30 degrees S as part of the Civil Aircraft for Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC) project (http://www.caribic-atmospheric.com). Particle morphology showed large variability with sampling latitude. Complicated branched structures dominated the large particles of the extratropical northern and southern hemisphere and the northern tropics. Particles in the tropics of the southern hemisphere were small in size and large in number concentration, whereas particles in or close to the intertropical convergence zone were few and small in size. Particles in the lowermost stratosphere were found to have similar structures but more branched than the ones found in the upper troposphere of the extratropics. Quantitative analysis revealed that the sulfur concentration varied by a factor of 50 in the nine samples analyzed in this study. The carbon-to-sulfur mass concentration ratio was lowest in the lowermost stratosphere (0.5) and highest in the tropics of the southern hemisphere (3.5). The elemental distribution of carbon and sulfur in individual particles was mapped by energy-filtered transmission electron microscopy (EFTEM). Almost all particles analyzed contained a mixture of carbonaceous and sulfurous matter. Particles with satellites were found by EFTEM to contain both carbon and sulfur in the central particle, whereas in the satellite particles only carbonaceous material was detected.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy