SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Helal A.) "

Sökning: WFRF:(Helal A.)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tierney, A C, et al. (författare)
  • Effects of dietary fat modification on insulin sensitivity and on other risk factors of the metabolic syndrome-LIPGENE : a European randomized dietary intervention study
  • 2011
  • Ingår i: International Journal of Obesity. - : Springer Science and Business Media LLC. - 0307-0565 .- 1476-5497. ; 35:6, s. 800-809
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:Excessive energy intake and obesity lead to the metabolic syndrome (MetS). Dietary saturated fatty acids (SFAs) may be particularly detrimental on insulin sensitivity (SI) and on other components of the MetS.Objective:This study determined the relative efficacy of reducing dietary SFA, by isoenergetic alteration of the quality and quantity of dietary fat, on risk factors associated with MetS.Design:A free-living, single-blinded dietary intervention study.Subjects and Methods:MetS subjects (n=417) from eight European countries completed the randomized dietary intervention study with four isoenergetic diets distinct in fat quantity and quality: high-SFA; high-monounsaturated fatty acids and two low-fat, high-complex carbohydrate (LFHCC) diets, supplemented with long chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs) (1.2 g per day) or placebo for 12 weeks. SI estimated from an intravenous glucose tolerance test (IVGTT) was the primary outcome measure. Lipid and inflammatory markers associated with MetS were also determined.Results:In weight-stable subjects, reducing dietary SFA intake had no effect on SI, total and low-density lipoprotein cholesterol concentration, inflammation or blood pressure in the entire cohort. The LFHCC n-3 PUFA diet reduced plasma triacylglycerol (TAG) and non-esterified fatty acid concentrations (P<0.01), particularly in men.Conclusion:There was no effect of reducing SFA on SI in weight-stable obese MetS subjects. LC n-3 PUFA supplementation, in association with a low-fat diet, improved TAG-related MetS risk profiles.
  •  
2.
  • Delgado-Lista, J., et al. (författare)
  • Pleiotropic effects of TCF7L2 gene variants and its modulation in the metabolic syndrome : From the LIPGENE study
  • 2011
  • Ingår i: Atherosclerosis. - : Elsevier BV. - 0021-9150 .- 1879-1484. ; 214:1, s. 110-116
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Variants of the TCF7L2 gene predict the development of type 2 diabetes mellitus (T2DM). We investigated the associations between gene variants of TCF7L2 and clinical features of the metabolic syndrome (MetS) (an entity often preceeding T2DM), and their interaction with non-genetic factors, including plasma saturated fatty acids (SFA) concentration and insulin resistance (IR). Methods: Fasting lipid profiles, insulin sensitivity, insulin secretion, anthropometrics, blood pressure and 10 gene variations of the TCF7L2 gene were determined in 450 subjects with MetS. Results: Several single nucleotide polymorphisms (SNP) showed phenotypic associations independent of SFA or IR. Carriers of the rare T allele of rs7903146, and of three other SNPs in linkage disequilibrium with rs7903146, had lower blood pressure and insulin secretion. High IR and the presence of the T-allele of rs7903146 acted synergistically to define those with reduced insulin secretion. Carriers of the minor allele of rs290481 exhibited an altered lipid profile, with increased plasma levels of apolipoprotein B, non-esterified fatty acids, cholesterol and apolipoprotein B in triglyceride rich lipoproteins, and LDL cholesterol. Carriers of the minor allele of rs11196224 that had higher plasma SFA levels showed elevated procoagulant/proinflammatory biomarkers, impaired insulin secretion and increased IR, whereas carriers of the minor allele of rs17685538 with high plasma SFA levels exhibited higher blood pressure. Conclusions/interpretation: SNP in the TCF7L2 gene are associated with differences in insulin secretion, blood pressure, blood lipids and coagulation in MetS patients, and may be modulated by SFA in plasma or IR.
  •  
3.
  • Garcia-Rios, Antonio, et al. (författare)
  • A Period 2 Genetic Variant Interacts with Plasma SFA to Modify Plasma Lipid Concentrations in Adults with Metabolic Syndrome
  • 2012
  • Ingår i: Journal of Nutrition. - : Elsevier BV. - 0022-3166 .- 1541-6100. ; 142:7, s. 1213-1218
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants of Period 2 (PER2), a circadian clock gene, have been linked to metabolic syndrome (MetS). However, it is still unknown whether these genetic variants interact with the various types of plasma fatty acids. This study investigated whether common single nucleotide polymorphisms (SNPs) in the PER2 locus (rs934945 and rs2304672) interact with various classes of plasma fatty acids to modulate plasma lipid metabolism in 381 participants with MetS in the European LIPGENE study. Interestingly, the rs2304672 SNP interacted with plasma total SFA concentrations to affect fasting plasma TG, TG-rich lipoprotein (TRL-TG), total cholesterol, apoC-II, apoB, and apoB-48 concentrations (P-interaction <0.001-0.046). Carriers of the minor allele (GC+GG) with the highest SFA concentration (>median) had a higher plasma TG concentration (P = 0.001) and higher TRL-TG (P < 0.001) than the CC genotype. In addition, participants carrying the minor G allele for rs2304672 SNP and with a higher SFA concentration (>median) had higher plasma concentrations of apo C-II (P < 0.001), apo C-III (P = 0.009), and apoB-48 (P = 0.028) compared with the homozygotes for the major allele (CC). In summary, the rs2304672 polymorphism in the PER2 gene locus may influence lipid metabolism by interacting with the plasma total SEA concentration in participants with MetS. The understanding of these gene-nutrient interactions could help to provide a better knowledge of the pathogenesis in MetS. 
  •  
4.
  • Petersson, Helena, et al. (författare)
  • Effects of dietary fat modification on oxidative stress and inflammatory markers in the LIPGENE study
  • 2010
  • Ingår i: British Journal of Nutrition. - 0007-1145 .- 1475-2662. ; 104:9, s. 1357-1362
  • Tidskriftsartikel (refereegranskat)abstract
    • Subjects with the metabolic syndrome (MetS) have enhanced oxidative stress and inflammation. Dietary fat quality has been proposed to be implicated in these conditions. We investigated the impact of four diets distinct in fat quantity and quality on 8-iso-PGF2α (a major F2-isoprostane and oxidative stress indicator), 15-keto-13,14-dihydro-PGF2α (15-keto-dihydro-PGF2α, a major PGF2α metabolite and marker of cyclooxygenase-mediated inflammation) and C-reactive protein (CRP). In a 12-week parallel multicentre dietary intervention study (LIPGENE), 417 volunteers with the MetS were randomly assigned to one of the four diets: two high-fat diets (38 % energy (%E)) rich in SFA or MUFA and two low-fat high-complex carbohydrate diets (28 %E) with (LFHCC n-3) or without (LFHCC) 1·24 g/d of very long chain n-3 fatty acid supplementation. Urinary levels of 8-iso-PGF2α and 15-keto-dihydro-PGF2α were determined by RIA and adjusted for urinary creatinine levels. Serum concentration of CRP was measured by ELISA. Neither concentrations of 8-iso-PGF2α and 15-keto-dihydro-PGF2α nor those of CRP differed between diet groups at baseline (P>0·07) or at the end of the study (P>0·44). Also, no differences in changes of the markers were observed between the diet groups (8-iso-PGF2α, P = 0·83; 15-keto-dihydro-PGF2α, P = 0·45; and CRP, P = 0·97). In conclusion, a 12-week dietary fat modification did not affect the investigated markers of oxidative stress and inflammation among subjects with the MetS in the LIPGENE study.
  •  
5.
  • Abujubara, Helal, et al. (författare)
  • Ionic Liquid-Mediated Approach for the Synthesis of Site-Specific Thioether Conjugates
  • 2023
  • Ingår i: Chemistry-a European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 29:28
  • Tidskriftsartikel (refereegranskat)abstract
    • Site-specific conjugation approaches are of great importance in drug discovery, notably for the synthesis of biochemical probes or molecular conjugates for targeted delivery. Herein, we report a mild ionic liquid (IL)-mediated thiolation technique that relies on the use of 1,3-ethyl-methyl imidazolium acetate, [C(2)mim][OAc] as a solvent and precursor to generate activated IL, as well as a solvent for the conjugation reaction. First, a focused library of active ILs was prepared for functionalizing/conjugating cysteine-containing small molecules and unprotected peptides. Interestingly, a bifunctional active IL could also be successfully employed as a linker for the conjugation of peptides lacking Cys. This study sets the ground for further investigation of the use of active ILs for modifying, labeling or conjugating larger and more complex therapeutic modalities such as proteins and antibodies.
  •  
6.
  • Ahmed, A., et al. (författare)
  • Toward High-Performance Triboelectric Nanogenerators by Engineering Interfaces at the Nanoscale : Looking into the Future Research Roadmap
  • 2020
  • Ingår i: Advanced Materials Technologies. - : Wiley-Blackwell. - 2365-709X. ; 5:11, s. 2000520-
  • Tidskriftsartikel (refereegranskat)abstract
    • To meet the future need for clean and sustainable energies, there has been considerable interest in the development of triboelectric nanogenerators (TENGs) that scavenge waste mechanical energies. The performance of a TENG at the macroscale is determined by the multifaceted role of surface and interface properties at the nanoscale, whose understanding is critical for the future development of TENGs. Therefore, various protocols from the atomic to the macrolevel for fabrication and tuning of surfaces and interfaces are required to obtain the desired TENG performance. These protocols branch out into three categories: chemical engineering, physical engineering, and structural engineering. Chemical engineering is an affordable and optimal strategy for introducing more surface polarities and higher work functions for the improvement of charge transfer. Physical engineering includes the utilization of surface morphology control, and interlayer interactions, which can enhance the active interfacial area and electron transfer capacity. Structural engineering at the macroscale, which includes device and electrode design/modifications has a considerable effect on the performance of TENGs. Future challenges and promising research directions related to the construction of next-generation TENG devices, taking into consideration “interfaces” are also presented.
  •  
7.
  •  
8.
  • Ferguson, Jane F, et al. (författare)
  • Gene-nutrient interactions in the metabolic syndrome : single nucleotide polymorphisms in ADIPOQ and ADIPOR1 interact with plasma saturated fatty acids to modulate insulin resistance
  • 2010
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 91:3, s. 794-801
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Progression of the metabolic syndrome (MetS) is determined by genetic and environmental factors. Gene-environment interactions may be important in modulating the susceptibility to the development of MetS traits. OBJECTIVE: Gene-nutrient interactions were examined in MetS subjects to determine interactions between single nucleotide polymorphisms (SNPs) in the adiponectin gene (ADIPOQ) and its receptors (ADIPOR1 and ADIPOR2) and plasma fatty acid composition and their effects on MetS characteristics. DESIGN: Plasma fatty acid composition, insulin sensitivity, plasma adiponectin and lipid concentrations, and ADIPOQ, ADIPOR1, and ADIPOR2 SNP genotypes were determined in a cross-sectional analysis of 451 subjects with the MetS who participated in the LIPGENE (Diet, Genomics, and the Metabolic Syndrome: an Integrated Nutrition, Agro-food, Social, and Economic Analysis) dietary intervention study and were repeated in 1754 subjects from the LIPGENE-SU.VI.MAX (SUpplementation en VItamines et Minéraux AntioXydants) case-control study (http://www.ucd.ie/lipgene). RESULTS: Single SNP effects were detected in the cohort. Triacylglycerols, nonesterified fatty acids, and waist circumference were significantly different between genotypes for 2 SNPs (rs266729 in ADIPOQ and rs10920533 in ADIPOR1). Minor allele homozygotes for both of these SNPs were identified as having degrees of insulin resistance, as measured by the homeostasis model assessment of insulin resistance, that were highly responsive to differences in plasma saturated fatty acids (SFAs). The SFA-dependent association between ADIPOR1 rs10920533 and insulin resistance was replicated in cases with MetS from a separate independent study, which was an association not present in controls. CONCLUSIONS: A reduction in plasma SFAs could be expected to lower insulin resistance in MetS subjects who are minor allele carriers of rs266729 in ADIPOQ and rs10920533 in ADIPOR1. Personalized dietary advice to decrease SFA consumption in these individuals may be recommended as a possible therapeutic measure to improve insulin sensitivity. This trial was registered at clinicaltrials.gov as NCT00429195.
  •  
9.
  • Ferguson, Jane F., et al. (författare)
  • NOS3 gene polymorphisms are associated with risk markers of cardiovascular disease, and interact with omega-3 polyunsaturated fatty acids
  • 2010
  • Ingår i: Atherosclerosis. - : Elsevier BV. - 0021-9150 .- 1879-1484. ; 211:2, s. 539-544
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Omega-3 polyunsaturated fatty acids (n-3 PUFA) may protect against the development of cardiovascular disease (CVD). Genotype at key genes such as nitric oxide synthase (NOS3) may determine responsiveness to fatty acids. Gene-nutrient interactions may be important in modulating the development of CVD, particularly in high-risk individuals with the metabolic syndrome (MetS). Methods: Biomarkers of CVD risk, plasma fatty acid composition, and NOS3 single nucleotide polymorphism (SNP) genotype (rs11771443, rs1800783, rs1800779, rs1799983, rs3918227, and rs743507) were determined in 450 individuals with the MetS from the LIPGENE dietary intervention cohort. The effect of dietary fat modification for 12 weeks on metabolic indices of the MetS was determined to understand potential NOS3 gene-nutrient interactions. Results: Several markers of inflammation and dyslipidaemia were significantly different between the genotype groups. A significant gene-nutrient interaction was observed between the NOS3 rs1799983 SNP and plasma n-3 PUFA status on plasma triacylglycerol (TAG) concentrations. Minor allele carriers (AC + AA) showed an inverse association with significantly higher plasma TAG concentrations in those with low plasma n-3 PUFA status and vice versa but the major allele homozygotes (CC) did not. Following n-3 PUFA supplementation, plasma TAG concentrations of minor allele carriers of rs1799983 were considerably more responsive to changes in plasma n-3 PUFA, than major allele homozygotes. Conclusions: Carriers of the minor allele at rs1799983 in NOS3 have plasma TAG concentrations which are more responsive to n-3 PUFA. This suggests that these individuals might show greater beneficial effects of n-3 PUFA consumption to reduce plasma TAG concentrations.
  •  
10.
  • Perez-Martinez, Pablo, et al. (författare)
  • Calpain-10 interacts with plasma saturated fatty acid concentrations to influence insulin resistance in individuals with the metabolic syndrome
  • 2011
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 93:5, s. 1136-1141
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Calpain-10 protein (intracellular Ca2+-dependent cysteine protease) may play a role in glucose metabolism, pancreatic beta cell function, and regulation of thermogenesis. Several CAPN10 polymorphic sites have been studied for their potential use as risk markers for type 2 diabetes and the metabolic syndrome (MetS). Fatty acids are key metabolic regulators that may interact with genetic factors and influence glucose metabolism. Objective: The objective was to examine whether the genetic variability at the CAPN10 gene locus is associated with the degree of insulin resistance and plasma fatty acid concentrations in subjects with MetS. Design: The insulin sensitivity index, glucose effectiveness, insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)], insulin secretion (disposition index, acute insulin response, and HOMA of beta cell function), plasma fatty acid composition, and 5 CAPN10 single nucleotide polymorphisms (SNPs) were determined in a cross-sectional analysis of 452 subjects with MetS participating in the LIPGENE dietary intervention cohort. Results: The rs2953171 SNP interacted with plasma total saturated fatty acid (SFA) concentrations, which were significantly associated with insulin sensitivity (P < 0.031 for fasting insulin, P < 0.028 for HOMA-IR, and P < 0.012 for glucose effectiveness). The G/G genotype was associated with lower fasting insulin concentrations, lower HOMA-IR, and higher glucose effectiveness in subjects with low SFA concentrations (below the median) than in subjects with the minor A allele (G/A and A/A). In contrast, subjects with the G/G allele with the highest SFA concentrations (above the median) had higher fasting insulin and HOMA-IR values and lower glucose effectiveness than did subjects with the A allele. Conclusion: The rs2953171 polymorphism at the CAPN10 gene locus may influence insulin sensitivity by interacting with the plasma fatty acid composition in subjects with MetS. This trial was registered at clinicaltrials. gov as NCT00429195.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy