SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hellemann Dana) "

Sökning: WFRF:(Hellemann Dana)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bach, Lennart T, et al. (författare)
  • Influence of Ocean Acidification on a Natural Winter-to-Summer Plankton Succession: First Insights from a Long-Term Mesocosm Study Draw Attention to Periods of Low Nutrient Concentrations
  • 2016
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Every year, the oceans absorb about 30% of anthropogenic carbon dioxide (CO2) leading to a re-equilibration of the marine carbonate system and decreasing seawater pH. Today, there is increasing awareness that these changes-summarized by the term ocean acidification (OA)-could differentially affect the competitive ability of marine organisms, thereby provoking a restructuring of marine ecosystems and biogeochemical element cycles. In winter 2013, we deployed ten pelagic mesocosms in the Gullmar Fjord at the Swedish west coast in order to study the effect of OA on plankton ecology and biogeochemistry under close to natural conditions. Five of the ten mesocosms were left unperturbed and served as controls (similar to 380 mu atm pCO(2)), whereas the others were enriched with CO2-saturated water to simulate realistic end-of-the-century carbonate chemistry conditions (mu 760 mu atm pCO(2)). We ran the experiment for 113 days which allowed us to study the influence of high CO2 on an entire winter-to-summer plankton succession and to investigate the potential of some plankton organisms for evolutionary adaptation to OA in their natural environment. This paper is the first in a PLOS collection and provides a detailed overview on the experimental design, important events, and the key complexities of such a "long-term mesocosm" approach. Furthermore, we analyzed whether simulated end-of-the-century carbonate chemistry conditions could lead to a significant restructuring of the plankton community in the course of the succession. At the level of detail analyzed in this overview paper we found that CO2-induced differences in plankton community composition were non-detectable during most of the succession except for a period where a phytoplankton bloom was fueled by remineralized nutrients. These results indicate: (1) Long-term studies with pelagic ecosystems are necessary to uncover OA-sensitive stages of succession. (2) Plankton communities fueled by regenerated nutrients may be more responsive to changing carbonate chemistry than those having access to high inorganic nutrient concentrations and may deserve particular attention in future studies.
  •  
2.
  • Boxhammer, Tim, et al. (författare)
  • Enhanced transfer of organic matter to higher trophic levels caused by ocean acidification and its implications for export production: A mass balance approach
  • 2018
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Ongoing acidification of the ocean through uptake of anthropogenic CO 2 is known to affect marine biota and ecosystems with largely unknown consequences for marine food webs. Changes in food web structure have the potential to alter trophic transfer, partitioning, and biogeochemical cycling of elements in the ocean. Here we investigated the impact of realistic end-of-the-century CO 2 concentrations on the development and partitioning of the carbon, nitrogen, phosphorus, and silica pools in a coastal pelagic ecosystem (Gullmar Fjord, Sweden). We covered the entire winter-to-summer plankton succession (100 days) in two sets of five pelagic mesocosms, with one set being CO 2 enriched (~760 μatm pCO 2 ) and the other one left at ambient CO 2 concentrations. Elemental mass balances were calculated and we highlight important challenges and uncertainties we have faced in the closed mesocosm system. Our key observations under high CO 2 were: (1) A significantly amplified transfer of carbon, nitrogen, and phosphorus from primary producers to higher trophic levels, during times of regenerated primary production. (2) A prolonged retention of all three elements in the pelagic food web that significantly reduced nitrogen and phosphorus sedimentation by about 11 and 9%, respectively. (3) A positive trend in carbon fixation (relative to nitrogen) that appeared in the particulate matter pool as well as the downward particle flux. This excess carbon counteracted a potential reduction in carbon sedimentation that could have been expected from patterns of nitrogen and phosphorus fluxes. Our findings highlight the potential for ocean acidification to alter partitioning and cycling of carbon and nutrients in the surface ocean but also show that impacts are temporarily variable and likely depending upon the structure of the plankton food web.
  •  
3.
  • Eilola, Kari, et al. (författare)
  • SMHI reportsSMHI rep., Oceanogr : Swedish Meteorological and Hydrological Institute reports. OceanographySMHISMHI report. Oceanography 2007:37OceanographyROSMHI RO
  • 2017
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This report is related to the BONUS project “Nutrient Cocktails in COAstal zones of the Baltic Sea” alias COCOA. The aim of BONUS COCOA is to investigate physical, biogeochemical and biological processes in a combined and coordinated fashion to improve the understanding of the interaction of these processes on the removal of nutrients along the land -sea interface. The report is especially related to BONUS COCOA WP 6 in which the main objective is extrapolation of results from the BONUS COCOA learning sites to coastal sites around the Baltic Sea in general. Specific objectives of this deliverable (D6.4) were to connect observed process rates with modelling data and ecosystem characteristics.In the report we made statistical analyses of observations from BONUS COCOA study sites together with results from the Swedish Coastal zone Model (SCM). Eight structural variables (water depth, temperature, salinity, bottom water concentrations of oxygen, ammonium, nitrate and phosphate, as well as nitrogen content in sediment) were found common to both the experimentally determined and the model data sets. The observed process rate evaluated in this report was denitrification. In addition regressions were tested between observed denitrification rates and several structural variables (lat itude, longitude, depth, light, temperature, salinity, grain class, porosity, loss of ignition, sediment organic carbon, total nitrogen content in the sediment, sediment carbon/nitrogen-ratio, sediment chlorphyll-a as well as bottom water concentrations of oxygen, ammonium, nitrate, and dissolved inorganic phosphorus and silicate) for pooled data from all learning sites.The statistical results showed that experimentally determined multivariate data set from the shallow, illuminated stations was mainly found to be similar to the multivariate data set produced by the SCM model. Generally, no strong correlations of simple relations between observed denitrification and available structural variables were found for data collected from all the learning sites. We found some non-significant correlation between denitrification rates and bottom water dissolved inorganic phosphorous and dissolved silica but the reason behind the correlations is not clear.We also developed and evaluated a theory to relate process rates to monitoring data and nutrient retention. The theoretical analysis included nutrient retention due to denitrification as well as burial of phosphorus and nitrogen. The theory of nutrient retention showed good correlations with model results. It was found that area-specific nitrogen and phosphorus retention capacity in a sub-basin depend much on mean water depth, water residence time, basin area and the mean nutrient concentrations in the active sediment layer and in the water column.
  •  
4.
  • Hellemann, Dana, et al. (författare)
  • Denitrification in an oligotrophic estuary : a delayed sink for riverine nitrate
  • 2017
  • Ingår i: Marine Ecology Progress Series. - : INTER-RESEARCH. - 0171-8630 .- 1616-1599. ; 583, s. 63-80
  • Tidskriftsartikel (refereegranskat)abstract
    • Estuaries are often seen as natural filters of riverine nitrate, but knowledge of this nitrogen sink in oligotrophic systems is limited. We measured spring and summer dinitrogen production (denitrification, anammox) in muddy and non-permeable sandy sediments of an oligotrophic estuary in the northern Baltic Sea, to estimate its function in mitigating the riverine nitrate load. Both sediment types had similar denitrification rates, and no anammox was detected. In spring at high nitrate loading, denitrification was limited by likely low availability of labile organic carbon. In summer, the average denitrification rate was similar to 138 mu mol N m(-2) d(-1). The corresponding estuarine nitrogen removal for August was similar to 1.2 t, of which similar to 93% was removed by coupled nitrification-denitrification. Particulate matter in the estuary was mainly phytoplankton derived (> 70% in surface waters) and likely based on the riverine nitrate which was not removed by direct denitrification due to water column stratification. Subsequently settling particles served as a link be tween the otherwise uncoupled nitrate in surface waters and benthic nitrogen removal. We suggest that the riverine nitrate brought into the oligotrophic estuary during the spring flood is gradually, and with a time delay, removed by benthic denitrification after being temporarily ` trapped' in phytoplankton particulate matter. The oligotrophic system is not likely to face eutrophication from increasing nitrogen loading due to phosphorus limitation. In response, coupled nitrification-denitrification rates are likely to stay constant, which might increase the future export of nitrate to the open sea and decrease the estuary's function as a nitrogen sink relative to the load.
  •  
5.
  • Robertson, Elizabeth, 1987, et al. (författare)
  • Application of the isotope pairing technique in sediments: use, challenges and new directions.
  • 2019
  • Ingår i: Limnology and Oceanography : Methods. - : Wiley. - 1541-5856. ; 17:2, s. 112-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining accurate rates of benthic nitrogen (N) removal and retention pathways from diverse environments is critical to our understanding of process distribution and constructing reliable N budgets and models. The whole‐core 15N isotope pairing technique (IPT) is one of the most widely used methods to determine rates of benthic nitrate‐reducing processes and has provided valuable information on processes and factors controlling N removal and retention in aquatic systems. While the whole core IPT has been employed in a range of environments, a number of methodological and environmental factors may lead to the generation of inaccurate data and are important to acknowledge for those applying the method. In this review, we summarize the current state of the whole core IPT and highlight some of the important steps and considerations when employing the technique. We discuss environmental parameters which can pose issues to the application of the IPT and may lead to experimental artifacts, several of which are of particular importance in environments heavily impacted by eutrophication. Finally, we highlight the advances in the use of the whole‐core IPT in combination with other methods, discuss new potential areas of consideration and encourage careful and considered use of the whole‐core IPT. With the recognition of potential issues and proper use, the whole‐core IPT will undoubtedly continue to develop, improve our understanding of benthic N cycling and allow more reliable budgets and predictions to be made.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy