SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Helmholz Heike) "

Sökning: WFRF:(Helmholz Heike)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Peruzzi, Niccolò, et al. (författare)
  • Multimodal ex vivo methods reveal that Gd-rich corrosion byproducts remain at the implant site of biodegradable Mg-Gd screws
  • 2021
  • Ingår i: Acta Biomaterialia. - : Elsevier. - 1742-7061 .- 1878-7568. ; 136, s. 582-591
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive research is being conducted on magnesium (Mg) alloys for bone implant manufacturing, due to their biocompatibility, biodegradability and mechanical properties. Gadolinium (Gd) is among the most promising alloying elements for property control in Mg alloy implants; however, its toxicity is controversial. Investigating Gd behavior during implant corrosion is thus of utmost importance. In this study, we analyzed the degradation byproducts at the implant site of biodegradable Mg-5Gd and Mg-10Gd implants after 12 weeks healing time, using a combination of different imaging techniques: histology, energy-dispersive x-ray spectroscopy (EDX), x-ray microcomputed tomography (µCT) and neutron µCT. The main finding has been that, at the healing time in exam, the corrosion appears to have involved only the Mg component, which has been substituted by calcium and phosphorus, while the Gd remains localized at the implant site. This was observed in 2D by means of EDX maps and extended to 3D with a novel application of neutron tomography. X-ray fluorescence analysis of the main excretory organs also did not reveal any measurable accumulation of Gd, further reinforcing the conclusion that very limited or no removal at all of Gd-alloy happened during degradation.
  •  
2.
  • Willumeit-Roemer, Regine, et al. (författare)
  • The Comparability of In Vitro and In Vivo Experiments for Degradable Mg Implants
  • 2022
  • Ingår i: MAGNESIUM TECHNOLOGY 2022. - Cham : Springer. - 9783030925338 - 9783030925321 ; , s. 8-15
  • Konferensbidrag (refereegranskat)abstract
    • Mg implants possess a great potential for clinical applications. Thousands of patients are already successfully treated with Mg implants and the number of approved products increases. Despite the fact that the implants generally work, we know that we have not yet reached a full understanding of all processes which occur during the degradation of the material and tissue regeneration. A prerequisite for a comprehensive description is the visualization and analysis of the in vivo processes with high resolution, while avoiding metal artefacts during imaging and taking care of different imaging properties of inorganic and organic matrices. Here, synchrotron radiation-based micro-computed tomography was utilized to determine the degradation rates for two implant materials (Mg-5Gd and Mg-10Gd, wt. %) in vitro and in vivo. The comparison for in vitro and in vivo degradation in terms of degradation rate and pitting factor shows that in vitro experiments predict in vivo results the error. As a second aspect, push-out experiments revealed a better integration into bone for Mg-10Gd and the improvement of implant stability over time. Finally, micro X-ray fluorescence spectrometry was applied to determine the elemental composition of degradation products around the Mg-5Gd specimen in vivo. This technique shows that the Mg content of the degrading specimen is decreasing while the Gd content stays constant.
  •  
3.
  • Zeller-Plumhoff, Berit, et al. (författare)
  • Oxygen-sensitive nanoparticles reveal the spatiotemporal dynamics of oxygen reduction during magnesium implant biodegradation
  • 2022
  • Ingår i: npj Materials Degradation. - : Springer Science and Business Media LLC. - 2397-2106. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnesium (Mg) alloys are becoming increasingly important in the biomedical field as temporary bone implants. However, the biodegradation process of Mg alloys is highly complex and recent findings suggest that oxygen (O2) consumption is non-negligible. In this study, we give experimental proof of O2 consumption during Mg degradation under physiological conditions. Specifically, we study pure Mg, Mg–6 wt%Ag and Mg–5 wt%Gd in Hanks’ balanced salt solution and Dulbecco’s modified Eagle’s medium. We show that O2 consumption and hydrogen evolution are inversely correlated and that O2 concentrations remain below 7.5% in certain cases, which could have significant implications for bone healing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy