SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hendrix Jelle) "

Sökning: WFRF:(Hendrix Jelle)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Longfils, Marco, 1990, et al. (författare)
  • Raster Image Correlation Spectroscopy Performance Evaluation
  • 2019
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 117:10, s. 1900-1914
  • Tidskriftsartikel (refereegranskat)abstract
    • Raster image correlation spectroscopy (RICS) is a fluorescence image analysis method for extracting the mobility, concentration, and stoichiometry of diffusing fluorescent molecules from confocal image stacks. The method works by calculating a spatial correlation function for each image and analyzing the average of those by model fitting. Rules of thumb exist for RICS image acquisitioning, yet a rigorous theoretical approach to predict the accuracy and precision of the recovered parameters has been lacking. We outline explicit expressions to reveal the dependence of RICS results on experimental parameters. In terms of imaging settings, we observed that a twofold decrease of the pixel size, e.g., from 100 to 50 nm, decreases the error on the translational diffusion constant (D) between three- and fivefold. For D = 1 mu m(2) s(-1), a typical value for intracellular measurements, similar to 25-fold lower mean-squared relative error was obtained when the optimal scan speed was used, although more drastic improvements were observed for other values of D. We proposed a slightly modified RICS calculation that allows correcting for the significant bias of the autocorrelation function at small (<<50 x 50 pixels) sizes of the region of interest. In terms of sample properties, at molecular brightness E = 100 kHz and higher, RICS data quality was sufficient using as little as 20 images, whereas the optimal number of frames for lower E scaled pro rata. RICS data quality was constant over the nM-mM concentration range. We developed a bootstrap-based confidence interval of D that outperformed the classical leastsquares approach in terms of coverage probability of the true value of D. We validated the theory via in vitro experiments of enhanced green fluorescent protein at different buffer viscosities. Finally, we outline robust practical guidelines and provide free software to simulate the parameter effects on recovery of the diffusion coefficient.
  •  
2.
  • Soininen, Hilkka, et al. (författare)
  • 24-month intervention with a specific multinutrient in people with prodromal Alzheimer's disease (LipiDiDiet): a randomised, double-blind, controlled trial.
  • 2017
  • Ingår i: The Lancet. Neurology. - 1474-4465. ; 16:12, s. 965-975
  • Tidskriftsartikel (refereegranskat)abstract
    • Nutrition is an important modifiable risk factor in Alzheimer's disease. Previous trials of the multinutrient Fortasyn Connect showed benefits in mild Alzheimer's disease dementia. LipiDiDiet investigated the effects of Fortasyn Connect on cognition and related measures in prodromal Alzheimer's disease. Here, we report the 24-month results of the trial.LipiDiDiet was a 24-month randomised, controlled, double-blind, parallel-group, multicentre trial (11 sites in Finland, Germany, the Netherlands, and Sweden), with optional 12-month double-blind extensions. The trial enrolled individuals with prodromal Alzheimer's disease, defined according to the International Working Group (IWG)-1 criteria. Participants were randomly assigned (1:1) to active product (125 mL once-a-day drink containing Fortasyn Connect) or control product. Randomisation was computer-generated centrally in blocks of four, stratified by site. All study personnel and participants were masked to treatment assignment. The primary endpoint was change in a neuropsychological test battery (NTB) score. Analysis was by modified intention to treat. Safety analyses included all participants who consumed at least one study product dose. This trial is registered with the Dutch Trial Register, number NTR1705.Between April 20, 2009, and July 3, 2013, 311 of 382 participants screened were randomly assigned to the active group (n=153) or control group (n=158). Mean change in NTB primary endpoint was -0·028 (SD 0·453) in the active group and -0·108 (0·528) in the control group; estimated mean treatment difference was 0·098 (95% CI -0·041 to 0·237; p=0·166). The decline in the control group was less than the prestudy estimate of -0·4 during 24 months. 66 (21%) participants dropped out of the study. Serious adverse events occurred in 34 (22%) participants in the active group and 30 (19%) in control group (p=0·487), none of which were regarded as related to the study intervention.The intervention had no significant effect on the NTB primary endpoint over 2 years in prodromal Alzheimer's disease. However, cognitive decline in this population was much lower than expected, rendering the primary endpoint inadequately powered. Group differences on secondary endpoints of disease progression measuring cognition and function and hippocampal atrophy were observed. Further study of nutritional approaches with larger sample sizes, longer duration, or a primary endpoint more sensitive in this pre-dementia population, is needed.European Commission 7th Framework Programme.
  •  
3.
  • Soininen, Hilkka, et al. (författare)
  • 36-month LipiDiDiet multinutrient clinical trial in prodromal Alzheimer's disease.
  • 2021
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 17:1, s. 29-40
  • Tidskriftsartikel (refereegranskat)abstract
    • The LipiDiDiet trial investigates the effects of the specific multinutrient combination Fortasyn Connect on cognition and related measures in prodromal Alzheimer's disease (AD). Based on previous results we hypothesized that benefits increase with long-term intervention.In this randomized, double-blind, placebo-controlled trial, 311 people with prodromal AD were recruited using the International Working Group-1 criteria and assigned to active product (125 mL once-a-day drink) or an isocaloric, same tasting, placebo control drink. Main outcome was change in cognition (Neuropsychological Test Battery [NTB] 5-item composite). Analyses were by modified intention-to-treat, excluding (ie, censoring) data collected after the start of open-label active product and/or AD medication.Of the 382 assessed for eligibility, 311 were randomized, of those 162 participants completed the 36-month study, including 81 with 36-month data eligible for efficacy analysis. Over 36months, significant reductions in decline were observed for the NTB 5-item composite (-60%; between-group difference 0.212 [95% confidence interval: 0.044 to 0.380]; P = 0.014), Clinical Dementia Rating-Sum of Boxes (-45%; P = 0.014), memory (-76%; P = 0.008), and brain atrophy measures; small to medium Cohen's d effect size (0.25-0.31) similar to established clinically relevant AD treatment.This multinutrient intervention slowed decline on clinical and other measures related to cognition, function, brain atrophy, and disease progression. These results indicate that intervention benefits increased with long-term use.
  •  
4.
  • Tamman, Hedvig, et al. (författare)
  • A nucleotide-switch mechanism mediates opposing catalytic activities of Rel enzymes
  • 2020
  • Ingår i: Nature Chemical Biology. - : Nature Publishing Group. - 1552-4450 .- 1552-4469. ; 16:8, s. 834-840
  • Tidskriftsartikel (refereegranskat)abstract
    • Bifunctional Rel stringent factors, the most abundant class of RelA/SpoT homologs, are ribosome-associated enzymes that transfer a pyrophosphate from ATP onto the 3 ' of guanosine tri-/diphosphate (GTP/GDP) to synthesize the bacterial alarmone (p)ppGpp, and also catalyze the 3 ' pyrophosphate hydrolysis to degrade it. The regulation of the opposing activities of Rel enzymes is a complex allosteric mechanism that remains an active research topic despite decades of research. We show that a guanine-nucleotide-switch mechanism controls catalysis by Thermus thermophilus Rel (Rel(Tt)). The binding of GDP/ATP opens the N-terminal catalytic domains (NTD) of Rel(Tt) (Rel(Tt)(NTD)) by stretching apart the two catalytic domains. This activates the synthetase domain and allosterically blocks hydrolysis. Conversely, binding of ppGpp to the hydrolase domain closes the NTD, burying the synthetase active site and precluding the binding of synthesis precursors. This allosteric mechanism is an activity switch that safeguards against futile cycles of alarmone synthesis and degradation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy