SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Henriksson Tina) "

Sökning: WFRF:(Henriksson Tina)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cope, Jonathan E., et al. (författare)
  • Clear effects on root system architecture of winter wheat cultivars (Triticum aestivum L.) from cultivation environment and practices
  • 2024
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Roots play a pivotal role in the adaption of a plant to its environment, with different root traits adapting the plant to different stresses. The environment affects the Root System Architecture (RSA), but the genetic factors determine to what extent, and whether stress brought about by extreme environmental conditions is detrimental to a specific crop. This study aimed to identify differences in winter wheat RSA caused by cultivation region and practice, in the form of preceding crop (precrop), and to identify if modern cultivars used in Sweden differ in their reaction to these environments. This was undertaken using high-throughput phenotyping to assess the RSA. Clear differences in the RSA were observed between the Swedish cultivation regions, precrop treatments, and interaction of these conditions with each other and the genetics. Julius showed a large difference between cultivars, with 9.3-17.1% fewer and 12-20% narrower seminal roots. Standardized yield decreased when grown after wheat, 23% less compared to oilseed rape (OSR), and when grown in the Southern region, 14% less than the Central region. Additionally, correlations were shown between the root number, angle, and grain yield, with different root types being correlated depending on the precrop. Cultivars on the Swedish market show differences that can be adapted to the region-precrop combinations. The differences in precrop effect on RSA between regions show global implications and a need for further assessment. Correlations between RSA and yield, based on root-typexprecrop, indicate different needs of the RSA depending on the management practices and show the potential for improving crop yield through targeting genotypic and environmental conditions in a holistic manner. Understanding this RSA variance, and the mechanisms of conditional response, will allow targeted cultivar breeding for specific environments, increasing plant health and food security.
  •  
2.
  • Dueholm, Bjørn, et al. (författare)
  • Cookability of 24 pea accessions-determining factors and potential predictors of cooking quality
  • 2024
  • Ingår i: Journal of the Science of Food and Agriculture. - : John Wiley & Sons. - 0022-5142 .- 1097-0010. ; 104:6, s. 3685-3696
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Cooking time and cooking evenness are two critical quantities when determining the cooking quality (termed cookability) of pulses. Deciphering which factors contribute to pulse cookability is important for breeding new cultivars, and the identification of potential cookability predictors can facilitate breeding efforts. Seeds from 24 morphologically diverse pea accessions were tested to identify contributing factors and potential predictors of the observed cookability using a Mattson cooker. Size- and weight-based measures were recorded, and seed-coat hardness was obtained with a penetrometer. Content of protein, starch (amylose and amylopectin), and phytate was also determined.RESULTS: Distinct differences were found between wrinkled and non-wrinkled seeds in terms of water-absorption capacity, seed-coat hardness, and plunger-perforation speed. Potential predictive indicators of cooking time and cooking evenness were seed-coat hardness (r = 0.49 and r = 0.38), relative area gained (r = -0.59 and r = -0.8), and percentage of swelled seeds after soaking (r = -0.49 and r = -0.58), but only for non-wrinkled seeds. Surprisingly, the coefficients of variation for the profile area of both dry and swelled seeds appeared to be potential cookability predictors of all pea types (correlation coefficients around r = 0.5 and supported by principal component analysis). However, no strong correlation was observed between cookability and protein, starch, or phytate levels.CONCLUSION: Using three types of instruments together with chemical components enabled the identification of novel cookability predictors for both cooking time and cooking evenness in pea. This study unveils the diverse quantitative aspects influencing cookability in pea. Considering both cooking time and cooking evenness, as well as seed-coat hardness, underscores the multifaceted nature of pulse cookability and offers important insights for future breeding strategies to enhance pea cultivars. (c) 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy