SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Henriques Oliveira Catarina) "

Sökning: WFRF:(Henriques Oliveira Catarina)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bexell, Daniel, et al. (författare)
  • Rat Multipotent Mesenchymal Stromal Cells Lack Long-Distance Tropism to 3 Different Rat Glioma Models
  • 2012
  • Ingår i: Neurosurgery. - 0148-396X. ; 70:3, s. 731-739
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Viral gene therapy of malignant brain tumors has been restricted by the limited vector distribution within the tumors. Multipotent mesenchymal stromal cells (MSCs) and other precursor cells have shown tropism for gliomas, and these cells are currently being explored as potential vehicles for gene delivery in glioma gene therapy. OBJECTIVE: To investigate MSC migration in detail after intratumoral and extratumoral implantation through syngeneic and orthotopic glioma models. METHODS: Adult rat bone marrow-derived MSCs were transduced to express enhanced green fluorescent protein and implanted either directly into or at a distance from rat gliomas. RESULTS: We found no evidence of long-distance MSC migration through the intact striatum toward syngeneic D74(RG2), N32, and N29 gliomas in the ipsilateral hemisphere or across the corpus callosum to gliomas located in the contralateral hemisphere. After intratumoral injection, MSCs migrated extensively, specifically within N32 gliomas. The MSCs did not proliferate within tumors, suggesting a low risk of malignant transformation of in vivo grafted cell vectors. Using a model for surgical glioma resection, we found that intratumorally grafted MSCs migrate efficiently within glioma remnants after partial surgical resection. CONCLUSION: The findings point to limitations for the use of MSCs as vectors in glioma gene therapy, although intratumoral MSC implantation provides a dense and tumor-specific vector distribution.
  •  
2.
  • Guerreiro, Duarte N., et al. (författare)
  • Mild Stress Conditions during Laboratory Culture Promote the Proliferation of Mutations That Negatively Affect Sigma B Activity in Listeria monocytogenes
  • 2020
  • Ingår i: Journal of Bacteriology. - : American Society for Microbiology. - 0021-9193 .- 1098-5530. ; 202:9
  • Tidskriftsartikel (refereegranskat)abstract
    • In Listeria monocytogenes, the full details of how stress signals are integrated into the σB regulatory pathway are not yet available. To help shed light on this question, we investigated a collection of transposon mutants that were predicted to have compromised activity of the alternative sigma factor B (σB). These mutants were tested for acid tolerance, a trait that is known to be under σB regulation, and they were found to display increased acid sensitivity, similar to a mutant lacking σB (ΔsigB). The transposon insertions were confirmed by whole-genome sequencing, but in each case, the strains were also found to carry a frameshift mutation in the sigB operon. The changes were predicted to result in premature stop codons, with negative consequences for σB activation, independently of the transposon location. Reduced σB activation in these mutants was confirmed. Growth measurements under conditions similar to those used during the construction of the transposon library revealed that the frameshifted sigB operon alleles conferred a growth advantage at higher temperatures, during late exponential phase. Mixed-culture experiments at 42°C demonstrated that the loss of σB activity allowed mutants to take over a population of parental bacteria. Together, our results suggest that mutations affecting σB activity can arise during laboratory culture because of the growth advantage conferred by these mutations under mild stress conditions. The data highlight the significant cost of stress protection in this foodborne pathogen and emphasize the need for whole-genome sequence analysis of newly constructed strains to confirm the expected genotype.IMPORTANCE: In the present study, we investigated a collection of Listeria monocytogenes strains that all carried sigB operon mutations. The mutants all had reduced σB activity and were found to have a growth advantage under conditions of mild heat stress (42°C). In mixed cultures, these mutants outcompeted the wild type when mild heat stress was present but not at an optimal growth temperature. An analysis of 22,340 published L. monocytogenes genome sequences found a high rate of premature stop codons present in genes positively regulating σB activity. Together, these findings suggest that the occurrence of mutations that attenuate σB activity can be favored under conditions of mild stress, probably highlighting the burden on cellular resources that stems from deploying the general stress response.
  •  
3.
  • Paul-Visse, Gesine, et al. (författare)
  • The adult human brain harbors multipotent perivascular mesenchymal stem cells.
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy