SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hens Bart) "

Search: WFRF:(Hens Bart)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Augustijns, Patrick, et al. (author)
  • Unraveling the behavior of oral drug products inside the human gastrointestinal tract using the aspiration technique : History, methodology and applications
  • 2020
  • In: European Journal of Pharmaceutical Sciences. - : ELSEVIER. - 0928-0987 .- 1879-0720. ; 155
  • Journal article (peer-reviewed)abstract
    • Fluid sampling from the gastrointestinal (GI) tract has been applied as a valuable tool to gain more insight into the fluids present in the human GI tract and to explore the dynamic interplay of drug release, dissolution, precipitation and absorption after drug product administration to healthy subjects. In the last twenty years, collaborative initiatives have led to a plethora of clinical aspiration studies that aimed to unravel the luminal drug behavior of an orally administered drug product. The obtained drug concentration-time profiles from different segments in the GI tract were a valuable source of information to optimize and/or validate predictive in vitro and in silico tools, frequently applied in the non-clinical stage of drug product development. Sampling techniques are presently not only being considered as a stand-alone technique but are also used in combination with other in vivo techniques (e.g., gastric motility recording, magnetic resonance imaging (MRI)). By doing so, various physiological variables can be mapped simultaneously and evaluated for their impact on luminal drug and formulation behavior. This comprehensive review aims to describe the history, challenges and opportunities of the aspiration technique with a specific focus on how this technique can unravel the luminal behavior of drug products inside the human GI tract by providing a summary of studies performed over the last 20 years. A section `Best practices' on how to perform the studies and how to treat the aspirated samples is described. In the conclusion, we focus on future perspectives concerning this technique.
  •  
2.
  • Hens, Bart, et al. (author)
  • Formulation predictive dissolution (fPD) testing to advance oral drug product development : An introduction to the US FDA funded '21st Century BA/BE' project
  • 2018
  • In: International Journal of Pharmaceutics. - : Elsevier. - 0378-5173 .- 1873-3476. ; 548:1, s. 120-127
  • Research review (peer-reviewed)abstract
    • Over the past decade, formulation predictive dissolution (fPD) testing has gained increasing attention. Another mindset is pushed forward where scientists in our field are more confident to explore the in vivo behavior of an oral drug product by performing predictive in vitro dissolution studies. Similarly, there is an increasing interest in the application of modern computational fluid dynamics (CFD) frameworks and high-performance computing platforms to study the local processes underlying absorption within the gastrointestinal (GI) tract. In that way, CFD and computing platforms both can inform future PBPK-based in silico frameworks and determine the GI-motility-driven hydrodynamic impacts that should be incorporated into in vitro dissolution methods for in vivo relevance. Current compendial dissolution methods are not always reliable to predict the in vivo behavior, especially not for biopharmaceutics classification system (BCS) class 2/4 compounds suffering from a low aqueous solubility. Developing a predictive dissolution test will be more reliable, cost-effective and less time-consuming as long as the predictive power of the test is sufficiently strong. There is a need to develop a biorelevant, predictive dissolution method that can be applied by pharmaceutical drug companies to facilitate marketing access for generic and novel drug products. In 2014, Prof. Gordon L. Amidon and his team initiated a far-ranging research program designed to integrate (1) in vivo studies in humans in order to further improve the understanding of the intraluminal processing of oral dosage forms and dissolved drug along the gastrointestinal (GI) tract, (2) advancement of in vitro methodologies that incorporates higher levels of in vivo relevance and (3) computational experiments to study the local processes underlying dissolution, transport and absorption within the intestines performed with a new unique CFD based framework. Of particular importance is revealing the physiological variables determining the variability in in vivo dissolution and GI absorption from person to person in order to address (potential) in vivo BE failures. This paper provides an introduction to this multidisciplinary project, informs the reader about current achievements and outlines future directions.
  •  
3.
  • Hens, Bart, et al. (author)
  • Leveraging Oral Drug Development to a Next Level : Impact of the IMI-Funded OrBiTo Project on Patient Healthcare
  • 2021
  • In: Frontiers in Medicine. - : Frontiers Media S.A.. - 2296-858X. ; 8
  • Research review (peer-reviewed)abstract
    • A thorough understanding of the behavior of drug formulations in the human gastrointestinal (GI) tract is essential when working in the field of oral drug development in a pharmaceutical company. For orally administered drug products, various GI processes, including disintegration of the drug formulation, drugrelease, dissolution, precipitation, degradation, dosage form transit and permeation, dictate absorption into the systemic circulation. These processes are not always fully captured in predictive in vitro and in silico tools, as commonly applied in the pre-clinical stage of formulation drug development. A collaborative initiative focused on the science of oral biopharmaceutics was established in 2012 between academic institutions and industrial companies to innovate, optimize and validate these in vitro and in silico biopharmaceutical tools. From that perspective, the predictive power of these models can be revised and, if necessary, optimized to improve the accuracy toward predictions of the in vivo performance of orally administered drug products in patients. The IMI/EFPIA-funded “Oral Bioavailability Tools (OrBiTo)” project aimed to improve our fundamental understanding of the GI absorption process. The gathered information was integrated into the development of new (or already existing) laboratory tests and computer-based methods in order to deliver more accurate predictions of drug product behavior in a real-life setting. These methods were validated with the use of industrial data. Crucially, the ultimate goal of the project was to set up a scientific framework (i.e., decision trees) to guide the use of these new tools in drug development. The project aimed to facilitate and accelerate the formulation development process and to significantly reduce the need for animal experiments in this area as well as for human clinical studies in the future. With respect to the positive outcome for patients, high-quality oral medicines will be developed where the required dose is well-calculated and consistently provides an optimal clinical effect. In a first step, this manuscript summarizes the setup of the project and how data were collected across the different work packages. In a second step, case studies of how this project contributed to improved knowledge of oral drug delivery which can be used to develop improved products for patients will be illustrated.
  •  
4.
  •  
5.
  • Mendoza-Garcia, Patricia, 1988-, et al. (author)
  • The Zic family homologue Odd-paired regulates Alk expression in Drosophila.
  • 2017
  • In: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 13:4
  • Journal article (peer-reviewed)abstract
    • The Anaplastic Lymphoma Kinase (Alk) receptor tyrosine kinase (RTK) plays a critical role in the specification of founder cells (FCs) in the Drosophila visceral mesoderm (VM) during embryogenesis. Reporter gene and CRISPR/Cas9 deletion analysis reveals enhancer regions in and upstream of the Alk locus that influence tissue-specific expression in the amnioserosa (AS), the VM and the epidermis. By performing high throughput yeast one-hybrid screens (Y1H) with a library of Drosophila transcription factors (TFs) we identify Odd-paired (Opa), the Drosophila homologue of the vertebrate Zic family of TFs, as a novel regulator of embryonic Alk expression. Further characterization identifies evolutionarily conserved Opa-binding cis-regulatory motifs in one of the Alk associated enhancer elements. Employing Alk reporter lines as well as CRISPR/Cas9-mediated removal of regulatory elements in the Alk locus, we show modulation of Alk expression by Opa in the embryonic AS, epidermis and VM. In addition, we identify enhancer elements that integrate input from additional TFs, such as Binou (Bin) and Bagpipe (Bap), to regulate VM expression of Alk in a combinatorial manner. Taken together, our data show that the Opa zinc finger TF is a novel regulator of embryonic Alk expression.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view