SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Herbst Victor) "

Sökning: WFRF:(Herbst Victor)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Vanderstichele, Hugo Marcel Johan, et al. (författare)
  • Optimized Standard Operating Procedures for the Analysis of Cerebrospinal Fluid Aβ42 and the Ratios of Aβ Isoforms Using Low Protein Binding Tubes
  • 2016
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877. ; 53:3, s. 1121-1132
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Reduced cerebrospinal fluid (CSF) concentration of amyloid-β1-42 (Aβ1-42) reflects the presence of amyloidopathy in brains of subjects with Alzheimer's disease (AD). Objective: To qualify the use of Aβ1-42/Aβ1-40 for improvement of standard operating procedures (SOP) for measurement of CSF Aβ with a focus on CSF collection, storage, and analysis. Methods: Euroimmun ELISAs for CSF Aβ isoforms were used to set up a SOP with respect to recipient properties (low binding, polypropylene), volume of tubes, freeze/thaw cycles, addition of detergents (Triton X-100, Tween-20) in collection or storage tubes or during CSF analysis. Data were analyzed with linear repeated measures and mixed effects models. Results: Optimization of CSF analysis included a pre-wash of recipients (e.g., tubes, 96-well plates) before sample analysis. Using the Aβ1-42/Aβ1-40 ratio, in contrast to Aβ1-42, eliminated effects of tube type, additional freeze/thaw cycles, or effect of CSF volumes for polypropylene storage tubes. 'Low binding' tubes reduced the loss of Aβ when aliquoting CSF or in function of additional freeze/thaw cycles. Addition of detergent in CSF collection tubes resulted in an almost complete absence of variation in function of collection procedures, but affected the concentration of Aβ isoforms in the immunoassay. Conclusion: The ratio of Aβ1-42/Aβ1-40 is a more robust biomarker than Aβ1-42 toward (pre-) analytical interfering factors. Further, 'low binding' recipients and addition of detergent in collection tubes are able to remove effects of SOP-related confounding factors. Integration of the Aβ1-42/Aβ1-40 ratio and 'low-binding tubes' into guidance criteria may speed up worldwide standardization of CSF biomarker analysis.
  •  
2.
  • Vanderstichele, Hugo, et al. (författare)
  • Recommendations for cerebrospinal fluid collection for the analysis by ELISA of neurogranin trunc P75, α-synuclein, and total tau in combination with Aβ(1-42)/Aβ(1-40)
  • 2017
  • Ingår i: Alzheimer's Research and Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The pathophysiology of neurodegeneration is complex. Its diagnosis requires an early identification of sequential changes in several hallmarks in the brains of affected subjects. The presence of brain pathology can be visualized in the cerebrospinal fluid (CSF) by protein profiling. It is clear that the field of Alzheimer’s disease (AD) will benefit from an integration of algorithms including CSF concentrations of individual proteins, especially as an aid in clinical decision-making or to improve patient enrolment in clinical trials. The protein profiling approach requires standard operating procedures for collection and storage of CSF which must be easy to integrate into a routine clinical lab environment. Our study provides recommendations for analysis of neurogranin trunc P75, α-synuclein, and tau, in combination with the ratio of β-amyloid Aβ(1-42)/Aβ(1-40). Methods: Protocols for CSF collection were compared with CSF derived from subjects with normal pressure hydrocephalus (n = 19). Variables included recipient type (collection, storage), tube volume, and addition of detergents at the time of collection. CSF biomarker analysis was performed with enzyme-linked immunosorbent assays (ELISAs). Data were analyzed with linear repeated measures and mixed effects models. Results: Adsorption to recipients is lower for neurogranin trunc P75, α-synuclein, and tau (<10%), as compared to Aβ(1-42). For neurogranin trunc P75 and total tau, there is still an effect on analyte concentrations as a function of the tube volume. Protocol-related differences for Aβ(1-42) can be normalized at the (pre-)analytical level using the ratio Aβ(1-42)/Aβ(1-40), but not by using the ratio Aβ(1-42)/tau. The addition of detergent at the time of collection eliminates differences due to adsorption. Conclusions: Our study recommends the use of low protein binding tubes for quantification in CSF (without additives) of all relevant CSF biomarkers. Pre-analytical factors have less effect on α-synuclein, neurogranin trunc P75, and total tau, as compared to Aβ(1-42). The ratio of Aβ(1-42)/Aβ(1-40), but not Aβ(1-42)/tau, can be used to adjust for pre-analytical differences in analyte concentrations. Our study does not recommend the inclusion of detergents at the time of collection of CSF. The present results provide an experimental basis for new recommendations for parallel analysis of several proteins using one protocol for collection and storage of CSF.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy