SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heritier H) "

Sökning: WFRF:(Heritier H)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fuselier, S. A., et al. (författare)
  • Ion chemistry in the coma of comet 67P near perihelion
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S67-S77
  • Tidskriftsartikel (refereegranskat)abstract
    • The coma and the comet-solar wind interaction of comet 67P/Churyumov-Gerasimenko changed dramatically from the initial Rosetta spacecraft encounter in 2014 August through perihelion in 2015 August. Just before equinox (at 1.6 au from the Sun), the solar wind signal disappeared and two regions of different cometary ion characteristics were observed. These 'outer' and 'inner' regions have cometary ion characteristics similar to outside and inside the ion pileup region observed during the Giotto approach to comet 1P/Halley. Rosetta/Double-Focusing Mass Spectrometer ion mass spectrometer observations are used here to investigate the H3O+/H2O+ ratio in the outer and inner regions at 67P/Churyumov-Gerasimenko. The H3O+/H2O+ ratio and the H3O+ signal are observed to increase in the transition from the outer to the inner region and the H3O+ signal appears to be weakly correlated with cometary ion energy. These ion composition changes are similar to the ones observed during the 1P/Halley flyby. Modelling is used to determine the importance of neutral composition and transport of neutrals and ions away from the nucleus. This modelling demonstrates that changes in the H3O+/H2O+ ratio appear to be driven largely by transport properties and only weakly by neutral composition in the coma.
  •  
2.
  • Galand, M., et al. (författare)
  • Ionospheric plasma of comet 67P probed by Rosetta at 3 au from the Sun
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S331-S351
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose to identify the main sources of ionization of the plasma in the coma of comet 67P/Churyumov-Gerasimenko at different locations in the coma and to quantify their relative importance, for the first time, for close cometocentric distances (< 20 km) and large heliocentric distances (> 3 au). The ionospheric model proposed is used as an organizing element of a multi-instrument data set from the Rosetta Plasma Consortium (RPC) plasma and particle sensors, from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis and from the Microwave Instrument on the Rosetta Orbiter, all on board the ESA/Rosetta spacecraft. The calculated ionospheric density driven by Rosetta observations is compared to the RPC-Langmuir Probe and RPC-Mutual Impedance Probe electron density. The main cometary plasma sources identified are photoionization of solar extreme ultraviolet (EUV) radiation and energetic electron-impact ionization. Over the northern, summer hemisphere, the solar EUV radiation is found to drive the electron density - with occasional periods when energetic electrons are also significant. Over the southern, winter hemisphere, photoionization alone cannot explain the observed electron density, which reaches sometimes higher values than over the summer hemisphere; electron-impact ionization has to be taken into account. The bulk of the electron population is warm with temperature of the order of 7-10 eV. For increased neutral densities, we show evidence of partial energy degradation of the hot electron energy tail and cooling of the full electron population.
  •  
3.
  • Hajra, R., et al. (författare)
  • Impact of a cometary outburst on its ionosphere Rosetta Plasma Consortium observations of the outburst exhibited by comet 67P/Churyumov-Gerasimenko on 19 February 2016
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 607
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed study of the cometary ionospheric response to a cometary brightness outburst using in situ measurements for the first time. The comet 67P/Churyumov-Gerasimenko (67P) at a heliocentric distance of 2.4 AU from the Sun, exhibited an outburst at similar to 1000 UT on 19 February 2016, characterized by an increase in the coma surface brightness of two orders of magnitude. The Rosetta spacecraft monitored the plasma environment of 67P from a distance of 30 km, orbiting with a relative speed of similar to 0.2 m s(-1). The onset of the outburst was preceded by pre-outburst decreases in neutral gas density at Rosetta, in local plasma density, and in negative spacecraft potential at similar to 0950 UT. In response to the outburst, the neutral density increased by a factor of similar to 1.8 and the local plasma density increased by a factor of similar to 3, driving the spacecraft potential more negative. The energetic electrons (tens of eV) exhibited decreases in the flux of factors of similar to 2 to 9, depending on the energy of the electrons. The local magnetic field exhibited a slight increase in amplitude (similar to 5 nT) and an abrupt rotation (similar to 36.4 degrees) in response to the outburst. A weakening of 10-100 mHz magnetic field fluctuations was also noted during the outburst, suggesting alteration of the origin of the wave activity by the outburst. The plasma and magnetic field effects lasted for about 4 h, from similar to 1000 UT to 1400 UT. The plasma densities are compared with an ionospheric model. This shows that while photoionization is the main source of electrons, electron-impact ionization and a reduction in the ion outflow velocity need to be accounted for in order to explain the plasma density enhancement near the outburst peak.
  •  
4.
  • Beth, A., et al. (författare)
  • First in situ detection of the cometary ammonium ion NH4+ (protonated ammonia NH3) in the coma of 67P/C-G near perihelion
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 462, s. S562-S572
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we report the first in situ detection of the ammonium ion NH4+ at 67P/Churyumov-Gerasimenko (67P/C-G) in a cometary coma, using the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Double Focusing Mass Spectrometer (DFMS). Unlike neutral and ion spectrometers onboard previous cometary missions, the ROSINA/DFMS spectrometer, when operated in ion mode, offers the capability to distinguish NH4+ from H2O+ in a cometary coma. We present here the ion data analysis of mass-to-charge ratios 18 and 19 at high spectral resolution and compare the results with an ionospheric model to put these results into context. The model confirms that the ammonium ion NH4+ is one of the most abundant ion species, as predicted, in the coma near perihelion.
  •  
5.
  •  
6.
  •  
7.
  • Goetz, Charlotte, et al. (författare)
  • The plasma environment of comet 67P/Churyumov-Gerasimenko
  • 2022
  • Ingår i: Space Science Reviews. - : Springer. - 0038-6308 .- 1572-9672. ; 218:8
  • Forskningsöversikt (refereegranskat)abstract
    • The environment of a comet is a fascinating and unique laboratory to study plasma processes and the formation of structures such as shocks and discontinuities from electron scales to ion scales and above. The European Space Agency's Rosetta mission collected data for more than two years, from the rendezvous with comet 67P/Churyumov-Gerasimenko in August 2014 until the final touch-down of the spacecraft end of September 2016. This escort phase spanned a large arc of the comet's orbit around the Sun, including its perihelion and corresponding to heliocentric distances between 3.8 AU and 1.24 AU. The length of the active mission together with this span in heliocentric and cometocentric distances make the Rosetta data set unique and much richer than sets obtained with previous cometary probes. Here, we review the results from the Rosetta mission that pertain to the plasma environment. We detail all known sources and losses of the plasma and typical processes within it. The findings from in-situ plasma measurements are complemented by remote observations of emissions from the plasma. Overviews of the methods and instruments used in the study are given as well as a short review of the Rosetta mission. The long duration of the Rosetta mission provides the opportunity to better understand how the importance of these processes changes depending on parameters like the outgassing rate and the solar wind conditions. We discuss how the shape and existence of large scale structures depend on these parameters and how the plasma within different regions of the plasma environment can be characterised. We end with a non-exhaustive list of still open questions, as well as suggestions on how to answer them in the future.
  •  
8.
  • Heritier, K. L., et al. (författare)
  • Ion composition at comet 67P near perihelion : Rosetta observations and model-based interpretation
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S427-S442
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the ion composition in the coma of comet 67P with newly detected ion species over the 28-37 u mass range, probed by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Double Focusing Mass Spectrometer (DFMS). In summer 2015, the nucleus reached its highest outgassing rate and ion-neutral reactions started to take place at low cometocentric distances. Minor neutrals can efficiently capture protons from the ion population, making the protonated version of these neutrals a major ion species. So far, only NH4+ has been reported at comet 67P. However, there are additional neutral species with proton affinities higher than that of water (besides NH3) that have been detected in the coma of comet 67P: CH3OH, HCN, H2CO and H2S. Their protonated versions have all been detected. Statistics showing the number of detections with respect to the number of scans are presented. The effect of the negative spacecraft potential probed by the Rosetta Plasma Consortium/LAngmuir Probe on ion detection is assessed. An ionospheric model has been developed to assess the different ion density profiles and compare them to the ROSINA/DFMS measurements. It is also used to interpret the ROSINA/DFMS observations when different ion species have similar masses, and their respective densities are not high enough to disentangle them using the ROSINA/DFMS high-resolution mode. The different ion species that have been reported in the coma of 67P are summarized and compared with the ions detected at comet 1P/Halley during the Giotto mission.
  •  
9.
  •  
10.
  • Heritier, K. L., et al. (författare)
  • Vertical structure of the near-surface expanding ionosphere of comet 67P probed by Rosetta
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469, s. S118-S129
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma environment has been measured for the first time near the surface of a comet. This unique data set has been acquired at 67P/Churyumov-Gerasimenko during ESA/Rosetta spacecraft's final descent on 2016 September 30. The heliocentric distance was 3.8 au and the comet was weakly outgassing. Electron density was continuously measured with Rosetta Plasma Consortium (RPC)-Mutual Impedance Probe (MIP) and RPC-LAngmuir Probe (LAP) during the descent from a cometocentric distance of 20 km down to the surface. Data set from both instruments have been cross-calibrated for redundancy and accuracy. To analyse this data set, we have developed a model driven by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis-COmetary Pressure Sensor total neutral density. The two ionization sources considered are solar extreme ultraviolet radiation and energetic electrons. The latter are estimated from the RPC-Ion and Electron Sensor (IES) and corrected for the spacecraft potential probed by RPC-LAP. We have compared the results of the model to the electron densities measured by RPC-MIP and RPC-LAP at the location of the spacecraft. We find good agreement between observed and modelled electron densities. The energetic electrons have access to the surface of the nucleus and contribute as the main ionization source. As predicted, the measurements exhibit a peak in the ionospheric density close to the surface. The location and magnitude of the peak are estimated analytically. The measured ionospheric densities cannot be explained with a constant outflow velocity model. The use of a neutral model with an expanding outflow is critical to explain the plasma observations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy