SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hermanson E) "

Sökning: WFRF:(Hermanson E)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Ruppel, M. M., et al. (författare)
  • Organic Compounds, Radiocarbon, Trace Elements and Atmospheric Transport Illuminating Sources of Elemental Carbon in a 300-Year Svalbard Ice Core
  • 2023
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 128:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Black carbon (BC) particles produced by incomplete combustion of biomass and fossil fuels warm the atmosphere and decrease the reflectivity of snow and ice, hastening their melt. Although the significance of BC in Arctic climate change is widely acknowledged, observations on its deposition and sources are few. We present BC source types in a 300-year (1700-2005) Svalbard ice core by analysis of particle-bound organic compounds, radiocarbon, and trace elements. According to the radiocarbon results, 58% of the deposited elemental carbon (EC, thermal-optical proxy of BC) is of non-fossil origin throughout the record, while the organic compounds suggest a higher percentage (68%). The contribution of fossil fuels to EC is suggested to have been elevated between 1860 and 1920, particularly based on the organics and trace element data. A second increase in fossil fuel sources seems to have occurred near the end of the record: according to radiocarbon measurements between 1960 and 1990, while the organics and trace element data suggest that the contribution of fossil fuels has increased since the 1970s to the end of the record, along with observed increasing EC deposition. Modeled atmospheric transport between 1948 and 2004 shows that increasing EC deposition observed at the glacier during that period can be associated with increased atmospheric transport from Far East Asia. Further observational BC source data are essential to help target climate change mitigation efforts. The combination of robust radiocarbon with organic compound analyses requiring low sample amounts seems a promising approach for comprehensive Arctic BC source apportionment.
  •  
5.
  • Scaife, A. A., et al. (författare)
  • Skillful long-range prediction of European and North American winters
  • 2014
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 41:7, s. 2514-2519
  • Tidskriftsartikel (refereegranskat)abstract
    • Until recently, long-range forecast systems showed only modest levels of skill in predicting surface winter climate around the Atlantic Basin and associated fluctuations in the North Atlantic Oscillation at seasonal lead times. Here we use a new forecast system to assess seasonal predictability of winter North Atlantic climate. We demonstrate that key aspects of European and North American winter climate and the surface North Atlantic Oscillation are highly predictable months ahead. We demonstrate high levels of prediction skill in retrospective forecasts of the surface North Atlantic Oscillation, winter storminess, near-surface temperature, and wind speed, all of which have high value for planning and adaptation to extreme winter conditions. Analysis of forecast ensembles suggests that while useful levels of seasonal forecast skill have now been achieved, key sources of predictability are still only partially represented and there is further untapped predictability. The winter NAO can be skilfully predicted months ahead The signal-to-noise ratio of the predictable signal is anomalously low Predictions of the risk of regional winter extremes are possible
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy