SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hernández Sotomayor S. M.Teresa) "

Sökning: WFRF:(Hernández Sotomayor S. M.Teresa)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • González-Mendoza, Victor M., et al. (författare)
  • Biochemical characterization of phospholipases C from Coffea arabica in response to aluminium stress
  • 2020
  • Ingår i: Journal of Inorganic Biochemistry. - : Elsevier BV. - 0162-0134 .- 1873-3344. ; 204
  • Tidskriftsartikel (refereegranskat)abstract
    • Signal transduction in plants determines their successful adaptation to diverse stress factors. Our group employed suspension cells to study the phosphoinositide pathway, which is triggered by aluminium stress. We investigated about members of the PI-specific phospholipase C (PLC) family and evaluated their transcription profiles in Coffea arabica (Ca) suspension cells after 14 days of culture when treated or not with 100 μM AlCl3. The four CaPLC1-4 members showed changes in their transcript abundance upon AlCl3 treatment. The expression profiles of CaPLC1/2 exhibited a rapid and transitory increase in abundance. In contrast, CaPLC3 and CaPLC4 showed that transcript levels were up-regulated in short times (at 30 s), while only CaPLC4 kept high levels and CaPLC3 was reduced to basal after 3 h of treatment. CaPLC proteins were heterologously expressed, and CaPLC2 and CaPLC4 were tested for in vitro activity in the presence or absence of AlCl3 and compared to Arabidopsis PLC2 (AtPLC2). A crude extract was isolated from coffee cells. CaPLC2 showed a similar inhibition (30%) as in AtPLC2 and in the crude extract, while in CaPLC4, the activity was enhanced by AlCl3. Additionally, we visualized the yellow fluorescent protein PH domain of human PLCδ1 (YFP-PHPLCδ1) subcellular localization in cells that were treated or not with AlCl3. In non-treated cells, we observed a polar fluorescence signal towards the fused membrane. However, when cells were treated with AlCl3, these signals were disrupted. Finally, this is the first time that PLC activity has been shown to be stimulated in vitro by AlCl3.
  •  
2.
  • Sánchez-Sandoval, Maria E., et al. (författare)
  • Phospholipid signaling pathway in Capsicum chinense suspension cells as a key response to consortium infection
  • 2021
  • Ingår i: BMC Plant Biology. - : Springer Science and Business Media LLC. - 1471-2229. ; 21
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mexico is considered the diversification center for chili species, but these crops are susceptible to infection by pathogens such as Colletotrichum spp., which causes anthracnose disease and postharvest decay in general. Studies have been carried out with isolated strains of Colletotrichum in Capsicum plants; however, under growing conditions, microorganisms generally interact with others, resulting in an increase or decrease of their ability to infect the roots of C. chinense seedlings and thus, cause disease. Results: Morphological changes were evident 24 h after inoculation (hai) with the microbial consortium, which consisted primarily of C. ignotum. High levels of diacylglycerol pyrophosphate (DGPP) and phosphatidic acid (PA) were found around 6 hai. These metabolic changes could be correlated with high transcription levels of diacylglycerol-kinase (CchDGK1 and CchDG31) at 3, 6 and 12 hai and also to pathogen gene markers, such as CchPR1 and CchPR5. Conclusions: Our data constitute the first evidence for the phospholipids signalling events, specifically DGPP and PA participation in the phospholipase C/DGK (PI-PLC/DGK) pathway, in the response of Capsicum to the consortium, offering new insights on chilis’ defense responses to damping-off diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy