SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hernandez Alonso Pablo) "

Sökning: WFRF:(Hernandez Alonso Pablo)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  •  
3.
  • Hudson, Lawrence N, et al. (författare)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
4.
  • Toledo, Estefania, et al. (författare)
  • Plasma lipidome and risk of atrial fibrillation: results from the PREDIMED trial
  • 2023
  • Ingår i: Journal of Physiology and Biochemistry. - 1138-7548 .- 1877-8755. ; 79:2, s. 355-364
  • Tidskriftsartikel (refereegranskat)abstract
    • The potential role of the lipidome in atrial fibrillation (AF) development is still widely unknown. We aimed to assess the association between lipidome profiles of the Prevención con Dieta Mediterránea (PREDIMED) trial participants and incidence of AF. We conducted a nested case–control study (512 incident centrally adjudicated AF cases and 735 controls matched by age, sex, and center). Baseline plasma lipids were profiled using a Nexera X2 U-HPLC system coupled to an Exactive Plus orbitrap mass spectrometer. We estimated the association between 216 individual lipids and AF using multivariable conditional logistic regression and adjusted the p values for multiple testing. We also examined the joint association of lipid clusters with AF incidence. Hitherto, we estimated the lipidomics network, used machine learning to select important network-clusters and AF-predictive lipid patterns, and summarized the joint association of these lipid patterns weighted scores. Finally, we addressed the possible interaction by the randomized dietary intervention. Forty-one individual lipids were associated with AF at the nominal level (p < 0.05), but no longer after adjustment for multiple-testing. However, the network-based score identified with a robust data-driven lipid network showed a multivariable-adjusted ORper+1SD of 1.32 (95% confidence interval: 1.16–1.51; p < 0.001). The score included PC plasmalogens and PE plasmalogens, palmitoyl-EA, cholesterol, CE 16:0, PC 36:4;O, and TG 53:3. No interaction with the dietary intervention was found. A multilipid score, primarily made up of plasmalogens, was associated with an increased risk of AF. Future studies are needed to get further insights into the lipidome role on AF. Current Controlled Trials number, ISRCTN35739639.
  •  
5.
  • Backes, Claudia, et al. (författare)
  • Production and processing of graphene and related materials
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
6.
  • Canudas, Silvia, et al. (författare)
  • Mediterranean Diet and Telomere Length : A Systematic Review and Meta-Analysis
  • 2020
  • Ingår i: Advances in Nutrition. - : Elsevier BV. - 2161-8313. ; 11:6, s. 1544-1554
  • Forskningsöversikt (refereegranskat)abstract
    • Accelerated telomere shortening has been associated with several age-related diseases and/or decreased lifespan in humans. The Mediterranean diet (MedDiet) is considered to be 1 of the most recognized diets for disease prevention and healthy aging, partially due to its demonstrated anti-inflammatory and antioxidative properties which may impact on telomere length (TL). The aim of this meta-analysis was to determine the associations between MedDiet adherence and TL maintenance. MEDLINE-PubMed and Cochrane databases were searched up to December 2018 for studies evaluating the association between MedDiet adherence and TL in blood cells. Two reviewers, working independently, screened all titles and abstracts to identify studies that met the inclusion criteria [cross-sectional, case-control, and prospective cohort studies and randomized clinical trials (RCTs) published in English and excluded nonoriginal articles]. Data were pooled by the generic inverse variance method using the random effects model and expressed as standardized mean difference (SMD). Heterogeneity was identified using the Cochran Q test and quantified by the I2 statistic. A total of 8 original cross-sectional studies were included for the quantitative meta-analysis, comprising a total of 13,733 participants from 5 countries. A positive association between adherence to the MedDiet and TL was observed in all meta-analyses, with the exception of those conducted only in men: SMD (95% CI) of 0.130 (0.029; 0.231) for all subjects, 0.078 (0.005; 0.152) for women, and 0.095 (-0.005; 0.195) for men. Only 1 prospective cohort study and 1 RCT were identified, therefore, we could not undertake a meta-analysis for these study designs. The present meta-analysis of cross-sectional studies demonstrates that higher MedDiet adherence is associated with longer TL. At the same time, larger and high-quality prospective studies and clinical trials are warranted to confirm this association.
  •  
7.
  • Householder, John Ethan, et al. (författare)
  • One sixth of Amazonian tree diversity is dependent on river floodplains
  • 2024
  • Ingår i: NATURE ECOLOGY & EVOLUTION. - 2397-334X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.
  •  
8.
  • Luize, Bruno Garcia, et al. (författare)
  • Geography and ecology shape the phylogenetic composition of Amazonian tree communities
  • 2024
  • Ingår i: JOURNAL OF BIOGEOGRAPHY. - 0305-0270 .- 1365-2699.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and v & aacute;rzea forest types, the phylogenetic composition varies by geographic region, but the igap & oacute; and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R-2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R-2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.
  •  
9.
  • Marto, João Pedro, et al. (författare)
  • Safety and Outcome of Revascularization Treatment in Patients With Acute Ischemic Stroke and COVID-19: The Global COVID-19 Stroke Registry.
  • 2023
  • Ingår i: Neurology. - 1526-632X. ; 100:7
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19-related inflammation, endothelial dysfunction, and coagulopathy may increase the bleeding risk and lower the efficacy of revascularization treatments in patients with acute ischemic stroke (AIS). We aimed to evaluate the safety and outcomes of revascularization treatments in patients with AIS and COVID-19.This was a retrospective multicenter cohort study of consecutive patients with AIS receiving intravenous thrombolysis (IVT) and/or endovascular treatment (EVT) between March 2020 and June 2021 tested for severe acute respiratory syndrome coronavirus 2 infection. With a doubly robust model combining propensity score weighting and multivariate regression, we studied the association of COVID-19 with intracranial bleeding complications and clinical outcomes. Subgroup analyses were performed according to treatment groups (IVT-only and EVT).Of a total of 15,128 included patients from 105 centers, 853 (5.6%) were diagnosed with COVID-19; of those, 5,848 (38.7%) patients received IVT-only and 9,280 (61.3%) EVT (with or without IVT). Patients with COVID-19 had a higher rate of symptomatic intracerebral hemorrhage (SICH) (adjusted OR 1.53; 95% CI 1.16-2.01), symptomatic subarachnoid hemorrhage (SSAH) (OR 1.80; 95% CI 1.20-2.69), SICH and/or SSAH combined (OR 1.56; 95% CI 1.23-1.99), 24-hour mortality (OR 2.47; 95% CI 1.58-3.86), and 3-month mortality (OR 1.88; 95% CI 1.52-2.33). Patients with COVID-19 also had an unfavorable shift in the distribution of the modified Rankin score at 3 months (OR 1.42; 95% CI 1.26-1.60).Patients with AIS and COVID-19 showed higher rates of intracranial bleeding complications and worse clinical outcomes after revascularization treatments than contemporaneous non-COVID-19 patients receiving treatment. Current available data do not allow direct conclusions to be drawn on the effectiveness of revascularization treatments in patients with COVID-19 or to establish different treatment recommendations in this subgroup of patients with ischemic stroke. Our findings can be taken into consideration for treatment decisions, patient monitoring, and establishing prognosis.The study was registered under ClinicalTrials.gov identifier NCT04895462.
  •  
10.
  • ter Steege, Hans, et al. (författare)
  • Mapping density, diversity and species-richness of the Amazon tree flora
  • 2023
  • Ingår i: COMMUNICATIONS BIOLOGY. - 2399-3642. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution. A study mapping the tree species richness in Amazonian forests shows that soil type exerts a strong effect on species richness, probably caused by the areas of these forest types. Cumulative water deficit, tree density and temperature seasonality affect species richness at a regional scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (9)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (10)
Författare/redaktör
Barlow, Jos (4)
Peres, Carlos A. (4)
Malhi, Yadvinder (3)
Phillips, Oliver L. (3)
Carvalho, Fernanda A ... (3)
ter Steege, Hans (3)
visa fler...
Berenguer, Erika (3)
Damasco, Gabriel, 19 ... (3)
Balslev, Henrik (3)
Holmgren, Milena (3)
Feeley, Kenneth J. (3)
Huamantupa-Chuquimac ... (3)
Rivas-Torres, Gonzal ... (3)
Farfan-Rios, William (3)
de Aguiar, Daniel P. ... (3)
Ahuite Reategui, Man ... (3)
Albuquerque, Bianca ... (3)
Alonso, Alfonso (3)
do Amaral, Dário Dan ... (3)
do Amaral, Iêda Leão (3)
Andrade, Ana (3)
de Andrade Miranda, ... (3)
Araujo-Murakami, Ale ... (3)
Arroyo, Luzmila (3)
Aymard C, Gerardo A. (3)
Baider, Cláudia (3)
Bánki, Olaf S. (3)
Baraloto, Chris (3)
Barbosa, Edelcilio M ... (3)
Barbosa, Flávia Rodr ... (3)
Brienen, Roel (3)
Camargo, José Luís (3)
Campelo, Wegliane (3)
Cano, Angela (3)
Cárdenas, Sasha (3)
Carrero Márquez, Yrm ... (3)
Castellanos, Hernán (3)
Castilho, Carolina V ... (3)
Cerón, Carlos (3)
Chave, Jerome (3)
Comiskey, James A. (3)
Correa, Diego F. (3)
Costa, Flávia R.C. (3)
Dallmeier, Francisco (3)
Dávila Doza, Hilda P ... (3)
Demarchi, Layon O. (3)
Dexter, Kyle G. (3)
Di Fiore, Anthony (3)
Hoffman, Bruce (3)
Galbraith, David (3)
visa färre...
Lärosäte
Göteborgs universitet (4)
Lunds universitet (3)
Chalmers tekniska högskola (3)
Umeå universitet (2)
Stockholms universitet (2)
Linköpings universitet (2)
visa fler...
Sveriges Lantbruksuniversitet (2)
Linnéuniversitetet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)
Medicin och hälsovetenskap (4)
Teknik (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy